Important Notice Regarding the Spread of Noxious Invasive Alien

Total Page:16

File Type:pdf, Size:1020Kb

Important Notice Regarding the Spread of Noxious Invasive Alien Important notice regarding the spread of noxious invasive alien Stinkbean plants (Paraserianthes lophantha (Willd.), also known as the Australian Albizia, Plume Albizia or Mountain Albezia Stinkbean. (Paraserianthes lophantha (Willd.) Evergreen shrub or small tree, with bipinnate leaves and large, yellow-whitish spikes. Scientific name: Paraserianthes lophantha (Willd.) I.C. Nielsen Common names: plume albizia, mountain albizia Family: Fabaceae (Leguminosae) After more than a decade of hard work Noordhoek residents, with the help of various government and city departments, have managed to control extensive stands of invasive Rooikrans and Longleaf Wattle in and around the suburb, along with several other less common invasive species. Enter the Stinkbean. A common problem with managing invasive species is that once a primary invader is removed, secondary opportunistic invaders fill the vacant ecological niche. This is the case with the rapid spread of Stinkbean into Noordhoek. The plant is originally from the Perth area of Australia, which has a climate similar to ours making the region susceptible to invasion. Stinkbean is also invasive in Chile, the Canary Islands, Portugal, New Zealand and even parts of Australia. Sinkbean has spread rapidly here. These fast growing trees are often mistaken for Blackwood, common along the Garden Route and of similar appearance, with fine fronded leaves, varigated bark and attractive cream flowers. No guessing why they are called Stinkbean. The plant bears many seeds from its first year of growth. This is a primary reason to stop its spread in our neighbourhood. As the old saw goes, “one years seeding is ten years weeding.” In the case of stinkbean it can be significantly worse as the seeds are thought to remain viable many years, similar to Rooikrans and Wattle. Removal Fortunately the plant is easily removed either by hand pulling if it is small, as it does not have an extensive root system. Larger plants can be cut down, close to the base and the plant removed. It is important to get them out as soon as possible as they supress the growth of other plants in the area they have grown. Both plants and seed should be removed. The plants seed in October/ November. The pods should be gathered and preferably either burned or disposed of in a bag in your rubbish, so they do not get the chance to germinate. As a category 1b alien invasive it is forbidden to have these plants on any property. Property owners can be held responsible for the costs of clearance and if they are found to spread. In the near future no property may be sold if it has any invasive species present. In light of this we urgently request all residents to keep a sharp eye out for this particular alien and assist us in nipping this problem in the bud. .
Recommended publications
  • (Hymenoptera: Eurytomidae) in the Integrated Control of Acacia Species in South Africa
    Proceedings of the X International Symposium on Biological Control of Weeds 919 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 919-929 (2000) The Potential Role of Bruchophagus acaciae (Cameron) (Hymenoptera: Eurytomidae) in the Integrated Control of Acacia Species in South Africa R. L. HILL1, A. J. GORDON2, and S. NESER3 1Richard Hill & Associates, Private Bag 4704, Christchurch, New Zealand 2Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599 South Africa 3Plant Protection Research Institute, Private Bag X134, Pretoria, 0001 South Africa Abstract Australian acacias invade watersheds and riverbeds in South Africa, reducing water flows and threatening environmental and economic values. Acacia mearnsii is the most widespread and important weed but also forms the basis of an important industry. A. dealbata, and to a lesser extent A. decurrens are also problems. All belong to the Section Botrycephalae of the sub-genus Heterophyllum. Short term control is achieved locally by removing plants, and by using herbicides, but seed-feeding control agents may provide an acceptable solution in the long term. Larvae of Bruchophagus acaciae (Cameron) (Hymenoptera: Eurytomidae) develop in the seeds of acacias. It was described from New Zealand, but is an Australian species. We explore whether B. acaciae has a role as a con- trol agent for acacias in South Africa. Seed was collected from 28 Australian species of Acacia growing in New Zealand. Attack was restricted to four of the seven species with- in the Section Botrycephalae, and two cases of attack on Acacia rubida (Section Phyllodineae; n=9). Apart from a wasp reared from one seed, A.
    [Show full text]
  • Acacia Saligna RA
    Risk Assessment: ………….. ACACIA SALIGNA Prepared by: Etienne Branquart (1), Vanessa Lozano (2) and Giuseppe Brundu (2) (1) [[email protected]] (2) Department of Agriculture, University of Sassari, Italy [[email protected]] Date: first draft 01 st November 2017 Subsequently Reviewed by 2 independent external Peer Reviewers: Dr Rob Tanner, chosen for his expertise in Risk Assessments, and Dr Jean-Marc Dufor-Dror chosen for his expertise on Acacia saligna . Date: first revised version 04 th January 2018, revised in light of comments from independent expert Peer Reviewers. Approved by the IAS Scientific Forum on 26/10/2018 1 2 3 4 5 6 7 1 Branquart, Lozano & Brundu PRA Acacia saligna 8 9 10 Contents 11 Summary of the Express Pest Risk Assessment for Acacia saligna 4 12 Stage 1. Initiation 6 13 1.1 - Reason for performing the Pest Risk Assessment (PRA) 6 14 1.2 - PRA area 6 15 1.3 - PRA scheme 6 16 Stage 2. Pest risk assessment 7 17 2.1 - Taxonomy and identification 7 18 2.1.1 - Taxonomy 7 19 2.1.2 - Main synonyms 8 20 2.1.3 - Common names 8 21 2.1.4 - Main related or look-alike species 8 22 2.1.5 - Terminology used in the present PRA for taxa names 9 23 2.1.6 - Identification (brief description) 9 24 2.2 - Pest overview 9 25 2.2.2 - Habitat and environmental requirements 10 26 2.2.3 Resource acquisition mechanisms 12 27 2.2.4 - Symptoms 12 28 2.2.5 - Existing PRAs 12 29 Socio-economic benefits 13 30 2.3 - Is the pest a vector? 14 31 2.4 - Is a vector needed for pest entry or spread? 15 32 2.5 - Regulatory status of the pest 15 33 2.6 - Distribution
    [Show full text]
  • Technical Guidelines for Reforestation at Ex-Coal-Mining Areas
    Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Japan International Forestry Promotion and Cooperation Center (JIFPRO) March 2015 Technical Guidelines for Reforestation at Ex-Coal-Mining Areas - Based on the outcomes of experimental reforestation activities at ex-coal-mining areas in South Kalimantan, Indonesia - Eiichiro Nakama, Seiichi Ohta, Yasuo Ohsumi, Tokunori Mori and Satohiko Sasaki Japan International Forestry Promotion and Cooperation Center Fakhrur Razie, Hamdani Fauzi and Mahrus Aryadi Lambung Mangkurat University, Indonesia Japan International Forestry Promotion and Cooperation Center March 2015 Foreword During the past decades, deforestation and forest degradation continues especially in developing countries. According to the report of the Food and Agriculture Organization of the United Nation (FAO), approximately 13 million hectors of global forests have been lost annually due to forest land conversion to other land uses, forest fires and natural disasters, while reforestation and natural regeneration account for an increase of approx. 7.8 million hectors of forest cover. This means the net loss of global forest is estimated at 5.2 million hectors. Adverse impacts of forest conversion to farmland can be minimized as far as the land is properly used and managed in a sustainable manner. However, in some cases, problem soils are exposed and abandoned as degraded land. Deforestation by mining is a big issue these years. Problem soils such as strong acid soils and/or too much heavy metal soils appear at the ex-mining areas. In some cases it is too difficult to reforestate.
    [Show full text]
  • Falcataria Moluccana Molucca Albizia Fabaceae
    Falcataria moluccana Molucca albizia Fabaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Falcataria moluccana has been widely planted throughout the world for ornament and reforestation. It was first introduced to Hawai'i in 1917 by Joseph Rock (Little and Skolmen 1989). In Hawai'i, F. moluccana has been planted by the hundreds of thousands for ornament and reforestation. Trees are attractive and the wood is useful for a variety of things from furniture making to canoe building. However, trees are spreading from initial plantings to adjacent pastures, forests, and disturbed areas. Because of its widespread distribution throughout the state coupled with its popularity, perhaps the best approach currently would be to control the tree in certain sites where it is not wanted, such as natural areas, pastures, and farmland. Seeds tend to fall nearby and trees do not disperse over a long distance (miles), except when people move the tree to a new area. If this dispersal trend were to change, such as if a vector to spread the trees further arrived or if it was planted again on a grand scale to new areas, the tree may become a bigger problem. TAXONOMY Family: Fabaceae (pea family) (Wagner et al. 1999). Latin name: Falcataria moluccana (Miq.) Barneby and Grimes (Herbarium Pacificum Staff 1998). Synonyms: Paraserianthes falcataria (L.) I. Nielsen (Wagner et al. 1999), Albizia falcataria (L.) Fosberg, A. falcata (L.) Backer (Little and Skolmen 1989). Common names: Molucca albizia (Little and Skolmen 1989). Taxonomic notes: There seems to be a lot of name changing and rearranging that has occurred within this complex.
    [Show full text]
  • Invasive Alien Species in Protected Areas
    INVASIVE ALIEN SPECIES AND PROTECTED AREAS A SCOPING REPORT Produced for the World Bank as a contribution to the Global Invasive Species Programme (GISP) March 2007 PART I SCOPING THE SCALE AND NATURE OF INVASIVE ALIEN SPECIES THREATS TO PROTECTED AREAS, IMPEDIMENTS TO IAS MANAGEMENT AND MEANS TO ADDRESS THOSE IMPEDIMENTS. Produced by Maj De Poorter (Invasive Species Specialist Group of the Species Survival Commission of IUCN - The World Conservation Union) with additional material by Syama Pagad (Invasive Species Specialist Group of the Species Survival Commission of IUCN - The World Conservation Union) and Mohammed Irfan Ullah (Ashoka Trust for Research in Ecology and the Environment, Bangalore, India, [email protected]) Disclaimer: the designation of geographical entities in this report does not imply the expression of any opinion whatsoever on the part of IUCN, ISSG, GISP (or its Partners) or the World Bank, concerning the legal status of any country, territory or area, or of its authorities, or concerning the delineation of its frontiers or boundaries. 1 CONTENTS ACKNOWLEDGEMENTS...........................................................................................4 EXECUTIVE SUMMARY ...........................................................................................6 GLOSSARY ..................................................................................................................9 1 INTRODUCTION ...................................................................................................12 1.1 Invasive alien
    [Show full text]
  • Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
    plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; [email protected] * Correspondence: [email protected] Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa).
    [Show full text]
  • List of Native Plants Grown in the Melville–Cockburn Area Compiled
    List of native plants grown in the Melville–Cockburn area compiled by the Murdoch Branch of the Wildflower Society of Western Australia The plants listed here have been grown in the suburb indicated or at Murdoch University for at least seven years and are considered reliable. Plant size is a guide. For some species there are now selections or cultivars that may grow taller or shorter. An asterisk * indicates not native to Western Australia. Suburb abbreviations: H Hilton, K Kardinya, NL North Lake, W Winthrop MU Murdoch University TREES (7 metres and taller) Acacia acuminata Jam K Acacia aneura Mulga K Acacia aptaneura Slender Mulga K Acacia ayersiana Broad-leaf Mulga K Acacia denticulosa Sandpaper Wattle K Acacia lasiocalyx K *Acacia podalyriaefolia Queensland Silver Wattle K Acacia saligna Black Wattle K Acacia steedmanii W Actinostrobus arenarius Sandplain Cypress K Agonis flexuosa WA Peppermint H, K, MU Allocasuarina fraseriana Sheoak H, K Banksia ashbyi subsp. ashbyi K, MU Banksia attenuata Slender Banksia K, MU, W Banksia grandis Bull Banksia K, MU, W *Banksia integrifolia subsp. integrifolia Coast Banksia H, MU Banksia menziesii Menzies Banksia MU, W Banksia prionotes Acorn Banksia MU *Brachychiton discolor Lacebark Kurrajong H Callitris preissii Rottnest Cypress K Corymbia calophylla Marri K Eucalyptus caesia subsp. caesia Caesia K, MU Eucalyptus caesia subsp. magna Silver Princess MU *Eucalyptus citriodora Lemon-scented Gum K Eucalyptus diversicolor Karri K Eucalyptus erythrocorys Illyarrie K, MU Eucalyptus todtiana Pricklybark K Eucalyptus torquata Coral Gum K Eucalyptus youngiana W Eucalyptus victrix K Eucalyptus websteriana K Hakea laurina Pincushion Hakea NL, W Hakea multilineata Grass-leaf Hakea K Hakea petiolaris subsp.
    [Show full text]
  • Plants of Woody Island
    PLANTS OF WOODY ISLAND Woody Island gets its name from all the tall trees growing there. Many of the common plants in the South Western region belong to genera that are endemic to Australia. Some common plants on the island are listed below. Woody Island has a very diverse flora for an area less than 2km x 2km, with 20 species of daises, 12 species of grass, 11 myrtles, 9 peas and wattles, 7 carnations and sedges, 4 species of trigger plants, 3 species of saltbush and 2 hakeas. Acacia conniana Acacias (wattles) Acacia is a genus of shrubs and trees that are also known as wattles. There are over 1300 species globally, and 960 are native to Australia. There are 5 species of wattle on Woody Island that flower at varying seasons. Raspberry Jam Tree Acacia acuminata The "raspberry jam tree" above gets its name from the strong odour of freshly cut wood, which resembles raspberry jam. The raspberry jam tree occurs as a shrub rather than a tree on Woody Island. Esperance Island Cruises 72 The Esplanade, Esperance WA 6450 Ph: 08 9071 5757 Fax: 08 9071 5550 Email: [email protected] Website: www.woodyisland.com.au Sticky Tailflower Anthocercis viscosa subsp caudata Anthocercis (tailflower) Sticky Tailflower is normally found close to, or growing on granites. Astartea Astartea is a genus of shrubs in botanical family Myrtaceae which is endemic to the south west of Western Australia. Astartea is also commonly found near granite. Astartea fascicularis Esperance Island Cruises 72 The Esplanade, Esperance WA 6450 Ph: 08 9071 5757 Fax: 08 9071 5550 Email: [email protected] Website: www.woodyisland.com.au Billardiera Billardiera (formerly Sollya) is a genus of small vines and shrubs endemic to Australia.
    [Show full text]
  • Rangelands, Western Australia
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Volume-Based Nutrient Content of Acacia Mangium, Eucalyptus Deglupta Paraserianthesd an Falcataria Industrian I L Tree Plantation Easn Si T Kalimantan, Indonesia
    512 Journal of Tropical Forest Science 13 (3): 512-526 (2001) VOLUME-BASED NUTRIENT CONTENT OF ACACIA MANGIUM, EUCALYPTUS DEGLUPTA PARASERIANTHESD AN FALCATARIA INDUSTRIAN I L TREE PLANTATION EASN SI T KALIMANTAN, INDONESIA J. Mackensen, Institut of Soil Science and Forest Nutrition, University of Gottingen, Busgenweg 2, 37077 Gottingen, Germany D. Ruhiyat Faculty Forestry,of Mulawarman 1013,University,Box O. Samarinda,P. East Kalimantan, Indonesia & H. Folster* Institut of Soil Science and Forest Nutrition, University of Gottingen, Busgenweg2, 37077 Gottingen, Germany Received December 1999______________________________________________ MACKENSEN, J., RUHIYAT, D. & FOLSTER, H. 2001. Volume-based nutrient content of Acacia mangium, Eucalyptus deglupta and Paraserianthes falcataria in industrial tree plantation Easn si t Kalimantan, Indonesia. Nutrient concentrations in stemwood, stembark, branches and leaves of Acacia mangium, Eucalyptus deglupta and Paraserianthes falcataria were analysed and compared to results by other studies. Nutrient concentrations differed significantly across components. Species-specific differences were profound. The weight-volume ratio for A. mangium and E. deglupta was described best with an exponential model, while for P. falcataria a simple linear model was sufficient. All equations were highly significant (R2> 0.83). Stand nutrient storage in 200 m* ha'1 stemwood and stembark ranged between 75-202 kg N, 2.6-9.5 kg P . ,Nutrient 10-2d 73-20 85-16, an Mg K a g 1k C g 8 k g 1sk store n branchei d d san storagg M d eleavean a C , s29-164 d K amounte an e , th P f %d o 70-223an o dt N e th %f o in stems.
    [Show full text]
  • Fhnews 149: 2
    forest health news No. 153, July 2005 ISSN 1175-9755 ALBIZIA WILT – A NEW DISEASE IN NEW ZEALAND? Wilt of Albizia spp. caused by Fusarium oxysporum f. sp. perniciosum is well documented in the United States, where it is Albizia julibrissin, the Chinese silk tree, is prized in many urban referred to as “mimosa wilt”. It has also been recorded in Greece, gardens for its attractive shape, colourful flowers, and delicate Japan, Argentina, Puerto Rico, and in parts of the former USSR . foliage. It is also a popular street tree because of its rapid growth, In the United States it is reported as an extremely serious disease relatively small size at maturity, and adaptability to a wide range of A. julibrissin, with little chance of survival for most infected of sites. Recently, wilting and dying A. julibrissin were reported trees. Other closely related species, e.g., Paraserianthes lophantha in two Auckland locations (St Heliers and Swanson) by Vigil (formerly Albizia lophantha), are also affected but to a lesser Forest Health Advisor Chris Inglis. Dark staining observed within extent. Initial symptoms of mimosa wilt appear as yellowing and the growth rings in the stem was characteristic of a vascular wilt wilting of the foliage on one or more branches. Defoliation and disease. Previously, disease samples from A. julibrissin have been death of the affected branches soon follow. These symptoms rare, although samples from street trees in Mt Eden, Auckland, steadily progress through the crown, and death of the plant usually were sent in for diagnosis in 1996. The cause of the wilt, dieback, occurs within a year.
    [Show full text]
  • Acacia Saligna
    Information on measures and related costs in relation to species considered for inclusion on the Union list: Acacia saligna This note has been drafted by IUCN within the framework of the contract No 07.0202/2017/763436/SER/ENV.D2 “Technical and Scientific support in relation to the Implementation of Regulation 1143/2014 on Invasive Alien Species”. The information and views set out in this note do not necessarily reflect the official opinion of the Commission, or IUCN. The Commission does not guarantee the accuracy of the data included in this note. Neither the Commission nor IUCN or any person acting on the Commission’s behalf, including any authors or contributors of the notes themselves, may be held responsible for the use which may be made of the information contained therein. Reproduction is authorised provided the source is acknowledged. This document shall be cited as: Brundu, G., Lozano, V. and Branquart, E. 2018. Information on measures and related costs in relation to species considered for inclusion on the Union list: Acacia saligna. Technical note prepared by IUCN for the European Commission. Date of completion: 05/10/2018 Comments which could support improvement of this document are welcome. Please send your comments by e-mail to [email protected]. Species (scientific name) Acacia saligna (Labill.) H.L.Wendl. s.l. Species (common name) UK: Coojong wattle / Port Jackson wattle / blue-leaved wattle; IT: Acacia saligna; ES: Acacia de hoja azul; MT: L-akacja Author(s) Giuseppe Brundu, Vanessa Lozano, Etienne Branquart Date Completed 05/10/2018 Reviewer Jean-Marc Dufour-Dror, Independent Consultant, Israel Summary Highlight of measures that provide the most cost-effective options to prevent the introduction, achieve early detection, rapidly eradicate and manage the species, including significant gaps in information or knowledge to identify cost-effective measures.
    [Show full text]