Reproductive Chances of Men with Azoospermia Due to Spermatogenic Dysfunction

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Chances of Men with Azoospermia Due to Spermatogenic Dysfunction Journal of Clinical Medicine Review Reproductive Chances of Men with Azoospermia Due to Spermatogenic Dysfunction Caroline Kang † , Nahid Punjani † and Peter N. Schlegel * Department of Urology, Weill Cornell Medical College, New York, NY 10021, USA; [email protected] (C.K.); [email protected] (N.P.) * Correspondence: [email protected] † Equal contribution. Abstract: Non-obstructive azoospermia (NOA), or lack of sperm in the ejaculate due to spermato- genic dysfunction, is the most severe form of infertility. Men with this form of infertility should be evaluated prior to treatment, as there are various underlying etiologies for NOA. While a significant proportion of NOA men have idiopathic spermatogenic dysfunction, known etiologies including ge- netic disorders, hormonal anomalies, structural abnormalities, chemotherapy or radiation treatment, infection and inflammation may substantively affect the prognosis for successful treatment. Despite the underlying etiology for NOA, most of these infertile men are candidates for surgical sperm retrieval and subsequent use in intracytoplasmic sperm injection (ICSI). In this review, we describe common etiologies of NOA and clinical outcomes following surgical sperm retrieval and ICSI. Keywords: non-obstructive azoospermia; infertility; intracytoplasmic sperm injection Citation: Kang, C.; Punjani, N.; 1. Introduction Schlegel, P.N. Reproductive Chances of Men with Azoospermia Due to Infertility affects up to 15% of couples worldwide, with up to 50% of cases attributable Spermatogenic Dysfunction. J. Clin. to male factor infertility [1]. In a majority of cases, the precise etiology underlying infertility Med. 2021, 10, 1400. https://doi.org/ in the male partner remains unclear. A subset of men with infertility have no sperm in 10.3390/jcm10071400 the ejaculate, known as azoospermia, which may further be classified into obstructive (OA) or non-obstructive azoospermia (NOA). The majority of cases of NOA are idiopathic, Academic Editors: Giovanni M. Colpi however some known etiologies include genetic disorders, chemotherapy or radiation, and Ettore Caroppo developmental or structural abnormalities, and hormonal imbalances (Table1). Despite the etiology underlying the spermatogenic dysfunction resulting in NOA, sperm often Received: 4 March 2021 can be surgically extracted from the testis for use in assisted reproductive technology Accepted: 26 March 2021 (ART) with varying success. Intracytoplasmic sperm injection (ICSI) requires only a single Published: 31 March 2021 spermatozoon for injection into an oocyte, and thus has improved the chances for men with NOA to conceive biological children. In this review, we discuss common etiologies for Publisher’s Note: MDPI stays neutral NOA and the reproductive outcomes for NOA men after surgical sperm retrieval and ICSI. with regard to jurisdictional claims in published maps and institutional affil- Table 1. Etiologies of non-obstructive azoospermia. iations. Etiology Example Idiopathic Genetic/Chromosomal Klinefelter syndrome, Y-chromosome microdeletions Iatrogenic/Surgical Chemotherapy, Radiation therapy Copyright: © 2021 by the authors. Developmental/Structural Cryptorchidism/Orchidopexy, Varicocele Licensee MDPI, Basel, Switzerland. Kallmann syndrome, hypogonadotropic Hormonal This article is an open access article hypogonadism, hyperprolactinemia/prolactinoma distributed under the terms and conditions of the Creative Commons 2. Treatment of Non-Obstructive Azoospermia Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ Effective management of infertility in men with NOA requires testicular sperm re- 4.0/). trieval as well as ART in the form of ICSI. Since sperm retrieval involves finding one of J. Clin. Med. 2021, 10, 1400. https://doi.org/10.3390/jcm10071400 https://www.mdpi.com/journal/jcm J. Clin. Med. 2021, 10, 1400 2 of 18 the very limited sites of sperm production within a highly dysfunctional testis of a man with NOA, it is not surprising that the approach used for sperm retrieval can substantially affect the chance of obtaining sperm for fertility. A wide variety of approaches have been used for attempted sperm retrieval including fine needle aspiration of the testis (testicular sperm aspiration; TESA), random biopsies of testicular tissue to identify foci of sperm production (testicular sperm extraction; “conven- tional” TESE) as well as directed testicular surgical sperm retrieval using a microsurgical approach (microdissection testicular sperm extraction; microTESE or mTESE). Each of these methods were compared using a meta-analysis of published litera- ture [2]. Although a recent meta-analysis reported no difference in sperm retrieval rates when comparing conventional TESE to microTESE, it is important to note that this anal- ysis did not require comparative studies so the heterogeneous nature of NOA patients treated at different sites invalidated any meaningful comparison of surgical techniques [3]. The superiority of microTESE is not surprising, as the surgery directs sampling of testicular tissue to the largest seminiferous tubules, which are those most likely to contain sperm [4]. From a laboratory perspective, the microTESE approach is ideal, as it limits the amount of tissue that must be examined by the andrologist to identify sperm to that which is richest in sperm production. Typical search times to find sperm in isolated, dispersed testicular tissue specimens is only 3 to 5 min at experienced centers. Of note, microTESE, although an invasive surgical procedure, has less effect on testicular function than other approaches for sperm retrieval [4]. 3. Causes of Non-Obstructive Azoospermia NOA occurs secondary to the disruption of spermatogenesis within the testicular parenchyma. This disruption of sperm production is a common phenotype with various underlying etiologies. Although understanding the underlying etiology of azoospermia may help in prognosis and counseling, the precise mechanisms by which spermatogenesis is disrupted in these disorders are not well understood. Men with NOA have varying ranges of spermatogenic failure, and even in 30–60% of those with severely dysfunctional histology (i.e., Sertoli Cell Only (SCO) or maturation arrest) small foci of spermatogenesis can be observed [5]. Furthermore, many other presumed idiopathic cases of NOA are likely to be caused by genetic abnormalities that are yet to be fully delineated. 3.1. Hormonal Imbalances Men with hypogonadotropic hypogonadism (HH) suffer from a lack of gonadotropin stimulation, resulting in failure of the testis to produce testosterone or sperm. The defect can be congenital (e.g., Kallmann syndrome, Prader-Willi syndrome) or acquired (e.g., sec- ondary to pituitary tumor or exogenous steroid administration). The resultant phenotype of these men is lack of development of secondary sexual characteristics (with prepubertal phenotype) and infertility. Importantly, because the phenotype is caused by a lack of go- nadotropin, treatment of these men with exogenous gonadotropins (e.g., human chorionic gonadotropin (hCG) and recombinant follicle-stimulating hormone (FSH)) can result in the appropriate development of secondary sexual characteristics (i.e., pubic hair development, testis growth, development of muscle mass) and sperm [6]. Men with HH typically do not require ICSI to achieve pregnancy as treatment with exogenous gonadotropins is highly effective in inducing spermatogenesis adequate to allow return of sperm to the ejaculate, which is associated with an increase in endogenous testosterone production [6]. Hyperprolactinemia, or elevated serum prolactin levels, is a rare etiology for azoosper- mia but clinically relevant. Prolactin is produced by the posterior pituitary and elevated levels can result from a prolactin-secreting adenoma (or prolactinoma) [7]. One study examining prolactin levels in infertile men observed increased prolactin levels in men with asthenozoospermia, oligozoospermia, and azoospermia [8]. Since hyperprolactinemia is typically effectively treated with medical therapy, it is rarely a cause for persistent NOA requiring surgical intervention. J. Clin. Med. 2021, 10, 1400 3 of 18 3.2. Klinefelter Syndrome Klinefelter Syndrome (KS) is the most common sex chromosome aneuploidy in in- fertile men, with an estimated prevalence of approximately 10% in men with NOA [9]. This syndrome involves the addition of one or more extra X-chromosome(s), resulting most commonly in a 47,XXY karyotype [9–11]. KS is thought to occur secondary to chro- mosomal nondisjunction during meiosis [12,13]. Physical examination of KS men often reveals characteristic findings of tall stature, reduced testis size, reduced chest and facial hair, gynecomastia, eunuchoid appearance, wide hips, and narrow shoulders [13]. Small testis size is thought to occur due to fibrosis and hyalinization of the seminiferous tubules and is progressive through puberty and adult development [14,15]. Rare, small foci of spermatogenesis in the testes of KS men is hypothesized to be present due to the capability of XXY stem cells to undergo spermatogenesis, or more likely, mitotic errors within the XXY stem cell population resulting in diploid cells capable of completing the remaining spermatogenic process [16]. 3.3. Y-Chromosome Microdeletions One of the most common identifiable etiologies of NOA are microdeletions of the azoospermia factor (AZF) region of the Y chromosome, and up to 12% of men with NOA harbor AZF microdeletions [17]. There are three
Recommended publications
  • Impact of Infection on the Secretory Capacity of the Male Accessory Glands
    Clinical�������������� Urolo�y Infection and Secretory Capacity of Male Accessory Glands International Braz J Urol Vol. 35 (3): 299-309, May - June, 2009 Impact of Infection on the Secretory Capacity of the Male Accessory Glands M. Marconi, A. Pilatz, F. Wagenlehner, T. Diemer, W. Weidner Department of Urology and Pediatric Urology, University of Giessen, Giessen, Germany ABSTRACT Introduction: Studies that compare the impact of different infectious entities of the male reproductive tract (MRT) on the male accessory gland function are controversial. Materials and Methods: Semen analyses of 71 patients with proven infections of the MRT were compared with the results of 40 healthy non-infected volunteers. Patients were divided into 3 groups according to their diagnosis: chronic prostatitis NIH type II (n = 38), chronic epididymitis (n = 12), and chronic urethritis (n = 21). Results: The bacteriological analysis revealed 9 different types of microorganisms, considered to be the etiological agents, isolated in different secretions, including: urine, expressed prostatic secretions, semen and urethral smears: E. Coli (n = 20), Klebsiella (n = 2), Proteus spp. (n = 1), Enterococcus (n = 20), Staphylococcus spp. (n = 1), M. tuberculosis (n = 2), N. gonorrhea (n = 8), Chlamydia tr. (n = 16) and, Ureaplasma urealyticum (n = 1). The infection group had significantly (p < 0.05) lower: semen volume, alpha-glucosidase, fructose, and zinc in seminal plasma and, higher pH than the control group. None of these parameters was sufficiently accurate in the ROC analysis to discriminate between infected and non- infected men. Conclusion: Proven bacterial infections of the MRT impact negatively on all the accessory gland function parameters evaluated in semen, suggesting impairment of the secretory capacity of the epididymis, seminal vesicles and prostate.
    [Show full text]
  • CUA Guideline: the Workup and Management of Azoospermic Males
    Originalcua guideline research CUA Guideline: The workup and management of azoospermic males Keith Jarvi, MD, FRCSC;* Kirk Lo, MD, FRCSC;* Ethan Grober, MD;* Victor Mak, MD, FRCSC;* Anthony Fischer, MD, FRCSC;¥ John Grantmyre, MD, FRCSC;± Armand Zini, MD, FRCSC;+ Peter Chan, MD, FRCSC;+ Genevieve Patry, MD, FRCSC;£ Victor Chow, MD, FRCSC;§ Trustin Domes, MD, FRCSC# *Department of Urology, Mount Sinai Hospital, University of Toronto, Toronto, ON; ¥Division of Urology, McMaster University, Hamilton, ON; ±Department of Urology, Dalhousie University, Halifax, NS; +Division of Urology, McGill University Health Centre, Montreal, QC; £Hôtel-Dieu De Lévis, Lévis, QC; §Department of Urologic Sciences, University of British Columbia, Vancouver, BC; #Saskatoon Health Region, Saskatoon, SK Cite as: Can Urol Assoc J 2015;9(7-8):229-35. http://dx.doi.org/10.5489/cuaj.3209 A further group of men have a failure to ejaculate. These Published online August 10, 2015. may be men with spinal cord injury, psychogenic failure to ejaculate, or neurological damage (sympathetic nerve committee was established at the request of the damage from, for example, a retroperitoneal lymph node Canadian Urological Association to develop guide- dissection). A lines for the investigation and management of azo- To understand the management of azoospermia, it is ospermia. Members of the committee, all of whom have important to also understand the role of assisted reproduc- special expertise in the investigation and management of tive technologies (ARTs) (i.e., in-vitro fertilization) in the male infertility, were chosen from different communities treatment of azoospermia. Since the 1970s, breakthroughs across Canada. The members represent different practices in the ARTs have allowed us to offer potentially successful in different communities.
    [Show full text]
  • Andrology User Handbook
    Document code: AY.P001 Version number: 7 Date of issue: 29/06/2020 USER HANDBOOK FOR ANDROLOGY SERVICES Diagnostic Semen Analysis Post Vasectomy Semen Analysis Retrograde Ejaculation Analysis Page 1 of 24 Document code: AY.P001 Version number: 7 Date of issue: 29/06/2020 Contents: 1. Introduction .................................................................................................................... 3 2. Location and Opening Times .......................................................................................... 4 3. Useful contacts ............................................................................................................... 4 4. Services provided by the laboratory ............................................................................... 5 5. Requesting semen analysis ............................................................................................ 5 6. Analysis test types .......................................................................................................... 8 6.1 Diagnostic semen analysis (DSA) test for fertility ......................................................... 8 6.1a Instructions for collection of a semen sample for DSA (fertility)............................... 9 6.1b How Diagnostic Semen Analysis assessments are reported .................................10 6.2 Retrograde Analysis ....................................................................................................11 6.2a Instructions for collection of urine for retrograde ejaculation
    [Show full text]
  • Restoration of Fertility by Gonadotropin Replacement in a Man With
    J Rohayem and others Fertility in hypogonadotropic 170:4 K11–K17 Case Report CAH with TARTs Restoration of fertility by gonadotropin replacement in a man with hypogonadotropic azoospermia and testicular adrenal rest tumors due to untreated simple virilizing congenital adrenal hyperplasia Julia Rohayem1, Frank Tu¨ ttelmann2, Con Mallidis3, Eberhard Nieschlag1,4, Sabine Kliesch1 and Michael Zitzmann1 Correspondence should be addressed 1Center of Reproductive Medicine and Andrology, Clinical Andrology, University of Muenster, Albert-Schweitzer- to J Rohayem Campus 1, Building D11, D-48149 Muenster, Germany, 2Institute of Human Genetics and 3Institute of Reproductive Email and Regenerative Biology, Center of Reproductive Medicine and Andrology, University of Muenster, Muenster, Julia.Rohayem@ Germany and 4Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia ukmuenster.de Abstract Context: Classical congenital adrenal hyperplasia (CAH), a genetic disorder characterized by 21-hydroxylase deficiency, impairs male fertility, if insufficiently treated. Patient: A 30-year-old male was referred to our clinic for endocrine and fertility assessment after undergoing unilateral orchiectomy for a suspected testicular tumor. Histopathological evaluation of the removed testis revealed atrophy and testicular adrenal rest tumors (TARTs) and raised the suspicion of underlying CAH. The remaining testis was also atrophic (5 ml) with minor TARTs. Serum 17-hydroxyprogesterone levels were elevated, cortisol levels were at the lower limit of normal range, and gonadotropins at prepubertal levels, but serum testosterone levels were within the normal adult range. Semen analysis revealed azoospermia. CAH was confirmed by a homozygous mutation g.655A/COG (IVS2-13A/COG) in European Journal of Endocrinology CYP21A2. Hydrocortisone (24 mg/m2) administered to suppress ACTH and adrenal androgen overproduction unmasked deficient testicular testosterone production.
    [Show full text]
  • Male Infertility
    www.livestrong.org.livestrong.org Male Infertility Some male cancer survivors find that they are not able to have children due to the effects of cancer treatment. By identifying your risk for infertility, you can take steps before treatment to preserve your fertility. For survivors who have already completed treatment, there are other options for having children. Male Infertility: Detailed Information This infinformationormation is meant to be a general introduction to this topic. The purpose is to provide a starting point for you to become more informed about important matters that may be affecting your life as a survivor and to provide ideas about steps you can take to learn more. This information is not intended nor should it be interpreted as providing professional medical, legal and financial advice. You should consult a trained professional for more information. Please read the Suggestions (http://www.livestrong.org/Get-Help/Learn-About-Cancer/Cancer-Support-Topics/Physical-Effects-of- Cancer/Male-Infertility#a#a) and Additional Resources (http://www.livestrong.org/Get-Help/Learn- About-Cancer/Cancer-Support-Topics/Physical-Effects-of-Cancer/Male-Infertility#a#a) sections for questions to ask and for more resources. Cancer and treatment may put survivors at risk for infertility. Male infertility generally means an inability to produce healthy sperm or to ejaculate sperm. There are many different causes of infertility in cancer survivors including physical and emotional. Certain treatments can cause or contribute to this condition. It is best to discuss the risks of infertility with your doctor before cancer treatment begins. However, there are options for survivors who experience infertility as a result of cancer or treatment.
    [Show full text]
  • Clinical, Hormonal and Genetic Characteristics of Androgen Insensitivity Syndrome in 39 Chinese Patients Qingxu Liu, Xiaoqin Yin and Pin Li*
    Liu et al. Reproductive Biology and Endocrinology (2020) 18:34 https://doi.org/10.1186/s12958-020-00593-0 RESEARCH Open Access Clinical, hormonal and genetic characteristics of androgen insensitivity syndrome in 39 Chinese patients Qingxu Liu, Xiaoqin Yin and Pin Li* Abstract Background: Abnormal androgen receptor (AR) genes can cause androgen insensitivity syndrome (AIS), and AIS can be classified into complete androgen insensitivity syndrome (CAIS), partial androgen insensitivity syndrome (PAIS) and mild AIS. We investigated the characteristics of clinical manifestations, serum sex hormone levels and AR gene mutations of 39 AIS patients, which provided deeper insight into this disease. Methods: We prospectively evaluated 39 patients with 46, XY disorders of sex development (46, XY DSD) who were diagnosed with AIS at the Department of Endocrinology of Shanghai Children’s Hospital from 2014 to 2019. We analysed clinical data from the patients including hormone levels and AR gene sequences. Furthermore, we screened the AR gene sequences of the 39 AIS patients to identify probable mutations. Results: The 39 AIS patients came from 37 different families; 19 of the patients presented CAIS, and 20 of them presented PAIS. The CAIS patients exhibited a higher cryptorchidism rate than the PAIS (100 and 55%, P = 0.001). There were no significant difference between the CAIS and PAIS groups regarding the levels of inhibin B (INHB), sex hormone-binding globulin (SHBG), basal luteinizing hormone (LH), testosterone (T), or basal dihydrotestosterone (DHT), the T:DHT ratio, DHT levels after human chorionic gonadotropin (HCG) stimulation or T levels after HCG stimulation. However, the hormone levels of AMH (P = 0.010), peak LH (P = 0.033), basal FSH (P = 0.009) and peak FSH (P = 0.033) showed significant differences between the CAIS group and the PAIS group.
    [Show full text]
  • Indications for the Use of Human Chorionic Gonadotropic Hormone for the Management of Infertility in Hypogonadal Men
    352 Review Article Indications for the use of human chorionic gonadotropic hormone for the management of infertility in hypogonadal men John Alden Lee, Ranjith Ramasamy Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Ranjith Ramasamy, MD. Department of Urology, University of Miami Miller School of Medicine, 1120 NW 14th Street, Room 1560, Miami, FL 33136, USA. Email: [email protected]. Abstract: Hypogonadism among men desiring fertility preservation presents a unique challenge to physicians. Over the past decade the number of younger men with hypogonadism has increased dramatically. These men are often treated with testosterone replacement therapy (TRT) which can result in azoospermia and potentially infertility. Human chorionic gonadotropin (hCG) therapy can help re-establish or maintain spermatogenesis in hypogonadal men. We review the indications, and discuss the current evidence for the role of hCG in men with hypogonadisms. Keywords: Human chorionic gonadotropin (hCG); hypogonadism; testosterone replacement therapy (TRT); hypogonadal hypogonadism; anabolic androgenic steroids (AAS); infertility Submitted Jan 17, 2018. Accepted for publication
    [Show full text]
  • How to Investigate Azoospermia in Stallions
    NON-PREGNANT MARE AND STALLION How to Investigate Azoospermia in Stallions Terry L. Blanchard, DVM, MS, Diplomate ACT; Steven P. Brinsko, DVM, MS, PhD, Diplomate ACT; Dickson D. Varner, DVM, MS, Diplomate ACT; and Charles C. Love, DVM, PhD, Diplomate ACT Authors’ address: Department of Large Animal Medicine and Surgery, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4475; e-mail: stalliondoc@ gmail.com. © 2009 AAEP. 1. Introduction did not ejaculate.3 A number of reports describe In a review of ejaculatory dysfunction, McDonnell1 therapy indicated for ejaculation failure, but they reported that ϳ25% of stallions referred to a fertility are not the subject of this report. Briefly, they in- clinic had evidence of ejaculatory problems. The clude breeding and/or pharmacological management vast majority of cases were anejaculatory (failure to to increase sexual stimulation before and during the ejaculate). Less than 1% of horses in that survey breeding process, treatment and/or breeding man- were truly azoospermic (i.e., ejaculated seminal flu- agement to minimize potential musculoskeletal pain ids devoid of sperm). Failure to ejaculate sperm that could interrupt the emission and ejaculatory can be a troublesome problem that requires accurate process, and pharmacologic manipulation to lower diagnosis, determination of prognosis for correction the threshold to emission and ejaculation.1–3 Tech- (sometimes necessitating retirement as a breeding niques used to manage repeated ejaculatory failure stallion), and arduous treatment and/or breeding can be arduous and time consuming, and they are management to correct.2,3 Figure 1 represents an reviewed by Varner et al.3 attempt at a schematic overview of an approach to When breeding behavior and apparent ejaculation diagnosis of lack of sperm in ejaculates.
    [Show full text]
  • The Impact of Testicular Torsion on Testicular Function
    Review Article pISSN: 2287-4208 / eISSN: 2287-4690 World J Mens Health Published online Apr 10, 2019 https://doi.org/10.5534/wjmh.190037 The Impact of Testicular Torsion on Testicular Function Frederik M. Jacobsen1 , Trine M. Rudlang1 , Mikkel Fode1 , Peter B. Østergren1 , Jens Sønksen1 , Dana A. Ohl2 , Christian Fuglesang S. Jensen1 ; On behalf of the CopMich Collaborative 1Department of Urology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark, 2Department of Urology, University of Michigan, Ann Arbor, MI, USA Torsion of the spermatic cord is a urological emergency that must be treated with acute surgery. Possible long-term effects of torsion on testicular function are controversial. This review aims to address the impact of testicular torsion (TT) on the endo- crine- and exocrine-function of the testis, including possible negative effects of torsion on the function of the contralateral testis. Testis tissue survival after TT is dependent on the degree and duration of TT. TT has been demonstrated to cause long- term decrease in sperm motility and reduce overall sperm counts. Reduced semen quality might be caused by ischemic dam- age and reperfusion injury. In contrast, most studies find endocrine parameters to be unaffected after torsion, although few report minor alterations in levels of gonadotropins and testosterone. Contralateral damage after unilateral TT has been sug- gested by histological abnormalities in the contralateral testis after orchiectomy of the torsed testis. The evidence is, however, limited as most human studies are small case-series. Theories as to what causes contralateral damage mainly derive from animal studies making it difficult to interpret the results in a human context.
    [Show full text]
  • Aspermia: a Review of Etiology and Treatment Donghua Xie1,2, Boris Klopukh1,2, Guy M Nehrenz1 and Edward Gheiler1,2*
    ISSN: 2469-5742 Xie et al. Int Arch Urol Complic 2017, 3:023 DOI: 10.23937/2469-5742/1510023 Volume 3 | Issue 1 International Archives of Open Access Urology and Complications REVIEW ARTICLE Aspermia: A Review of Etiology and Treatment Donghua Xie1,2, Boris Klopukh1,2, Guy M Nehrenz1 and Edward Gheiler1,2* 1Nova Southeastern University, Fort Lauderdale, USA 2Urological Research Network, Hialeah, USA *Corresponding author: Edward Gheiler, MD, FACS, Urological Research Network, 2140 W. 68th Street, 200 Hialeah, FL 33016, Tel: 305-822-7227, Fax: 305-827-6333, USA, E-mail: [email protected] and obstructive aspermia. Hormonal levels may be Abstract impaired in case of spermatogenesis alteration, which is Aspermia is the complete lack of semen with ejaculation, not necessary for some cases of aspermia. In a study of which is associated with infertility. Many different causes were reported such as infection, congenital disorder, medication, 126 males with aspermia who underwent genitography retrograde ejaculation, iatrogenic aspemia, and so on. The and biopsy of the testes, a correlation was revealed main treatments based on these etiologies include anti-in- between the blood follitropine content and the degree fection, discontinuing medication, artificial inseminization, in- of spermatogenesis inhibition in testicular aspermia. tracytoplasmic sperm injection (ICSI), in vitro fertilization, and reconstructive surgery. Some outcomes were promising even Testosterone excreted in the urine and circulating in though the case number was limited in most studies. For men blood plasma is reduced by more than three times in whose infertility is linked to genetic conditions, it is very difficult cases of testicular aspermia, while the plasma estradiol to predict the potential effects on their offspring.
    [Show full text]
  • Multiple Congenital Genitourinary Anomalies in a Polled Goat
    Multiple Congenital Genitourinary Anomalies in a Polled Goat WILLIAM W. KING, DVM, PHD, DIPLOMATE, ACLAM,1,2* MELVIN E. YOUNG,1 AND M. EUGENE FOX, DVM3 A 1-day-old, Toggenburg/Nubian crossbred goat of polled parentage was referred for necropsy because of a large (diameter, 5 cm) bladder-like mass protruding from the perineal midline and difficult urination. Differential diagnoses included cutaneous cyst, ectopic urinary bladder, and urethral diverticulum/dilatation. Several genitourinary aberrations were noted. A second, smaller (diameter, 1 cm), more distal cystic structure was adjacent to an ambiguous prepuce. Testicles were discovered within a con- stricted, subcutaneous space near the inguinal canals. A rudimentary penis was located dorsal to the penile urethra with no appreciable urethral process. A tiny external urethral orifice was discerned only after liquid was injected into the lumen of the cystic structures, confirming their identity as urethral dilatations. The dilatations were separated by a constricting band of fibrous tissue. No other significant findings were detected. This case illustrates a combination of congenital anomalies including bilateral cryptorchidism with scrotal absence, segmental urethral hypoplasia, and urethral dilatation, most likely associated with the intersex condition seen in polled breeds. The continued production and use of small ruminants as animal models demands the prompt recognition of congenital anomalies. This case also exemplifies the precautions required when breeding goats with polled ancestry. The domestic goat (Capra hircus) has historically served and Nubian/Toggenburg sire. The owner reported that the doe had continues to play an important role in biomedical research (1). completed a normal gestation period on a diet of natural grass/ Many small breeds are available, facilitating common labora- alfalfa hay and water.
    [Show full text]
  • Transgender Identity and Cryptorchidism: a Case Study
    ORIGINAL ARTICLE Volume 42, Issue 1, January-February 2019 doi: 10.17711/SM.0185-3325.2019.007 Transgender identity and cryptorchidism: A case study Tania Real Quintanar,1 Rebeca Robles García,1 María Elena Medina-Mora,1 Juan Carlos Jorge,2 Lucía Vázquez Pérez3 1 Centro de Investigación en Salud ABSTRACT Mental Global, Dirección de In- vestigaciones Epidemiológicas y There is a wide range of possible combinations in relation to sex at birth, gender identity, and Psicosociales, Instituto Nacional de Introduction. Psiquiatría Ramón de la Fuente Mu- sexual orientations. Specific medical and psychological treatment needs may also vary depending on these ñíz, Mexico City, Mexico. combinations. Objective. In order to promote interventions that focus on the perceived needs of those directly 2 Departamento de Anatomía y Neu- involved, the aim of the present case study is to describe the clinical and life experiences of a 43-year old trans- robiología, Escuela de Medicina, gender woman with cryptorchidism and examine the interplay between this relative common testicular problem Universidad de Puerto Rico, San at birth, gender identity, and sexual orientation formation processes from her own perspective. An Juan, Puerto Rico. Method. in-depth interview was conducted at a specialized care centre in Mexico City, Mexico. The interview was audio 3 Departamento de Investigaciones Epidemiológicas y Psicosociales, recorded and transcribed for a content analysis. Results. The case under analysis was assigned to the male Dirección de Investigaciones Epi- sex and identified herself as a transgender woman and lesbian. Although it is not possible to conclude that demiológicas y Psicosociales, Insti- her gender identity or sexual orientation is related to her antecedent of cryptorchidism, as she reflected on her tuto Nacional de Psiquiatría Ramón related negative experiences, she concluded that her gender identity and sexual orientation trajectories, as well de la Fuente Muñíz, Mexico City, Mexico.
    [Show full text]