Measuring Revocation Effectiveness in the Windows Code

Total Page:16

File Type:pdf, Size:1020Kb

Measuring Revocation Effectiveness in the Windows Code The Broken Shield: Measuring Revocation Effectiveness in the Windows Code-Signing PKI Doowon Kim and Bum Jun Kwon, University of Maryland, College Park; Kristián Kozák, Masaryk University, Czech Republic; Christopher Gates, Symantec; Tudor Dumitras, University of Maryland, College Park https://www.usenix.org/conference/usenixsecurity18/presentation/kim This paper is included in the Proceedings of the 27th USENIX Security Symposium. August 15–17, 2018 • Baltimore, MD, USA ISBN 978-1-939133-04-5 Open access to the Proceedings of the 27th USENIX Security Symposium is sponsored by USENIX. The Broken Shield: Measuring Revocation Effectiveness in the Windows Code-Signing PKI Doowon Kim Bum Jun Kwon Kristian´ Kozak´ University of Maryland University of Maryland Masaryk University Christopher Gates Tudor Dumitras, Symantec Research Labs University of Maryland Abstract code. A common security policy is to trust executables that carry valid signatures from unsuspicious publishers. Recent measurement studies have highlighted security The premise for trusting these executables is that the threats against the code-signing public key infrastructure signing keys are not controlled by malicious actors. (PKI), such as certificates that had been compromised Unfortunately, anecdotal evidence and recent measure- or issued directly to the malware authors. The primary ments of the Windows code-signing ecosystem have doc- mechanism for mitigating these threats is to revoke the umented cases of signed malware [8, 9, 12, 23, 26] and abusive certificates. However, the distributed yet closed potentially unwanted programs (PUPs) [1, 13, 17, 28], nature of the code signing PKI makes it difficult to evalu- where the trusted certificates were either compromised ate the effectiveness of revocations in this ecosystem. In or issued directly to the malware authors. The pri- consequence, the magnitude of signed malware threat is mary defense against these threats is to revoke the cer- not fully understood. tificates involved in the abuse. For the better studied In this paper, we collect seven datasets, including the Web’s PKI, prior measurements have uncovered impor- largest corpus of code-signing certificates, and we com- tant problems with this approach, including long revo- bine them to analyze the revocation process from end to cation delays [6, 29, 30], large bandwidth costs for dis- end. Effective revocations rely on three roles: (1) discov- seminating the revocation information [19], and clients ering the abusive certificates, (2) revoking the certificates that do not check whether certificates are revoked [19]. effectively, and (3) disseminating the revocation infor- In contrast, little is currently known about the effec- mation for clients. We assess the challenge for discover- tiveness of revocations in the code signing PKI. With- ing compromised certificates and the subsequent revoca- out this understanding, platform security protections risk tion delays. We show that erroneously setting revocation making incorrect assumptions about how critical revo- dates causes signed malware to remain valid even after cations are for end-host security and about the practical the certificate has been revoked. We also report failures challenges for implementing effective revocations in the in disseminating the revocations, leading clients to con- code-signing ecosystem. tinue trusting the revoked certificates. Code signing uses a default-valid trust model, where certificate chains remain trusted until proven compro- 1 Introduction mised. Due to this fact, missing or delayed revocations for a certificate involved in abuse allow bad actors to gen- The code-signing Public Key Infrastructure (PKI) is a erate trusted executables until the certificate expires or is fundamental building block for establishing trust in com- successfully added to a revocation list. puter software [22]. This PKI allows software publish- Abusive code-signing certificates may also present a ers to sign their executables and to embed certificates security threat beyond their expiration dates, which is an that bind the signing keys to the publishers’ real-world important distinction from the Web’s PKI where the ex- identities. In turn, client platforms can verify the signa- piration date limits the use of a compromised certificate tures and check the publishers, to confirm the integrity and also puts a limit on how long a revocation for that of third-party programs and to avoid executing malicious certificate must be maintained. To avoid re-signing and USENIX Association 27th USENIX Security Symposium 851 Role Finding Implication The mark-recapture estimation for the number of compro- Discovery There might be malware with compromised certificates that mised certificates suggests that even a large AV vendor can of remain a threat for a long time without being detected. Potentially only see about 36.5% of the population. CAs took on average 171.4 days to revoke the compro- Compromised Compromised certificates are not discovered and revoked mised certificates after the malware signed with the cer- Certificates for a long time. tificates appeared in the wild. Setting CAs erroneously set effective revocation dates for 62 cer- Wrong effective revocation date setting results in the sur- Revocation Date tificates, causing 402 signed malware to remain valid. vival of signed malware although its certificates is revoked. Clients have no way to check the revocation status of the 788 certificates contain neither CRLs nor OCSP points. certificates. 13 CRLs and 15 OCSP servers had reachability issues. Dissemination OCSP servers responded with unknown or unauthorized of messages. CAs improperly maintain their CRLs and OCSP servers. Revocation 19 certificates have inconsistent responses from CRLs and Information OCSP; they are valid from OCSP but are revoked in CRLs. Errors in the revocation process are made, and later re- 278 revoked certificates were added and then later removed tracted. CAs misunderstood the code signing PKI and re- from 18 CRLs. moved expired certificates from CRLs. Table 1: Summary of findings. distributing binaries when a signing certificate expires, files, while soft revocations that set a revocation date af- Windows developers may extend the validity of binaries ter the issuance date may not cover undiscovered signed they release by including a trusted timestamp, provided malware. Moreover, the CAs also must properly main- by a Time-Stamping Authority (TSA), that certifies the tain their revocation infrastructure so that the informa- signing time of a binary. If a malicious binary is cor- tion of compromise can be disseminated to the clients. If rectly signed and timestamped before the expiration date the dissemination is not handled as it should be, it may of the certificate, it will remain trusted even after its cer- reduce the incentives for revoking code signing certifi- tificate expires—unless the certificate is revoked. This cates. These challenges render the code signing ecosys- means that prompt and effective revocations, even of ex- tem opaque and difficult to audit, which contributes to an pired certificates, are critical in the code signing PKI. under-appreciation of the security threats that result from An effective revocation process faces additional chal- ineffective revocations. lenges in the code signing ecosystem. This process in- In this paper, we present an end-to-end measurement volves three roles: (1) discovering certificates that are of certificate revocations in the code signing PKI; in compromised or controlled by malicious actors; (2) re- particular, how effective is the current revocation pro- voking these certificates effectively; and (3) disseminat- cess from discovery to dissemination, and what threats ing the revocation information so that it is broadly avail- are introduced if the process is not properly done. Our able. work extends prior works in the code signing PKI; previ- Unlike in the Web’s PKI, where potentially com- ous studies have focused on signed PUPs [1, 13, 28] and promised certificates can be discovered systematically signed malware [12], but there is no study of code sign- through network scanning [6, 29, 30], in the code sign- ing certificate revocation process yet. Unlike the prior ing PKI this requires discovering signed malware or PUP studies in the Web’s PKI [2, 6, 7, 10, 19] where TLS cer- samples on end-hosts around the world. Security compa- tificate can be collected by scanning the Internet, we are nies involved in this discovery process cannot observe all unable to utilize a comprehensive corpus of code sign- the hosts where a maliciously signed binary may appear. ing certificates since there is no official repository for This also makes it a challenge to detect the total number code signing certificates. To overcome the challenge, of certificates that are actively being used to sign mal- we utilize data sets that are publicly released from prior ware, which leads to an incorrect perception about the research [1, 13] and increase our coverage with Syman- need and urgency of revocations. Even though a signed tec’s internal repository of binary samples. We extract malicious binary is discovered, it is difficult to determine 145,582 unique leaf code signing certificates from the the date when a certificate revocation should become ef- data sets. From the code signing certificates, we also ex- fective. Hard revocations that invalidate the entire life tract 215 Certificate Revocation Lists (CRLs) used only of the certificate may invalidate too many benign signed for code signing certificates,
Recommended publications
  • Scripting – Windows Powershell – Part 5
    CNT 4603: System Administration Spring 2012 Scripting – Windows PowerShell – Part 5 Instructor : Dr. Mark Llewellyn [email protected] HEC 236, 4078-823-2790 http://www.cs.ucf.edu/courses/cnt4603/spr2012 Department of Electrical Engineering and Computer Science Computer Science Division University of Central Florida CNT 4603: Scripting – Windows PowerShell – Part 5 Page 1 Dr. Mark Llewellyn © Code Signing • In the second set of notes on PowerShell we discussed the execution policy which is part of the security built-in to PowerShell. • We modified PowerShell’s default setting of Restricted, which prevents PowerShell from running any scripts (it is restricted to running in an interactive mode only). • We changed the setting using the set-executionpolicy cmdlet to RemoteSigned, which allowed locally created scripts to be loaded and executed without being digitally signed. • The other two options are: AllSigned, which is a notch under Restricted, in that all scripts must be digitally signed by a publisher you trust in order to be loaded and executed. The Unrestricted option allows any script to be executed but for non-local scripts the user is prompted for an action. CNT 4603: Scripting – Windows PowerShell – Part 5 Page 2 Dr. Mark Llewellyn © Code Signing • In short code signing is the process of digitally signing scripts, executables, dynamic link libraries (DLLs), and so forth to establish a level of trust for the code. • The trust granted to digitally signed code is based on two assumptions. – One, a signed piece of code ensures that the code hasn’t been altered or corrupted since being signed. – Two, the digital signature serves to prove the identity of the code’s author, which helps you to determine whether the code is safe for execution.
    [Show full text]
  • Certified Malware: Measuring Breaches of Trust in the Windows Code-Signing PKI
    Certified Malware: Measuring Breaches of Trust in the Windows Code-Signing PKI Doowon Kim Bum Jun Kwon Tudor Dumitras, University of Maryland University of Maryland University of Maryland College Park, MD College Park, MD College Park, MD [email protected] [email protected] [email protected] ABSTRACT To establish trust in third-party software, we currently rely on Digitally signed malware can bypass system protection mechanisms the code-signing Public Key Infrastructure (PKI). This infrastruc- that install or launch only programs with valid signatures. It can ture includes Certification Authorities (CAs) that issue certificates also evade anti-virus programs, which often forego scanning signed to software publishers, vouching for their identity. Publishers use binaries. Known from advanced threats such as Stuxnet and Flame, these certificates to sign the software they release, and users rely this type of abuse has not been measured systematically in the on these signatures to decide which software packages to trust broader malware landscape. In particular, the methods, effective- (rather than maintaining a list of trusted packages). If adversaries ness window, and security implications of code-signing PKI abuse can compromise code signing certificates, this has severe impli- are not well understood. We propose a threat model that highlights cations for end-host security. Signed malware can bypass system three types of weaknesses in the code-signing PKI. We overcome protection mechanisms that install or launch only programs with challenges specific to code-signing measurements by introducing valid signatures, and it can evade anti-virus programs, which often techniques for prioritizing the collection of code-signing certificates neglect to scan signed binaries.
    [Show full text]
  • Measuring Breaches of Trust in the Windows Code-Signing PKI
    Session F5: Understanding Security Fails CCS’17, October 30-November 3, 2017, Dallas, TX, USA Certified Malware: Measuring Breaches of Trust in the Windows Code-Signing PKI Doowon Kim Bum Jun Kwon Tudor Dumitras, University of Maryland University of Maryland University of Maryland College Park, MD College Park, MD College Park, MD [email protected] [email protected] [email protected] ABSTRACT To establish trust in third-party software, we currently rely on Digitally signed malware can bypass system protection mechanisms the code-signing Public Key Infrastructure (PKI). This infrastruc- that install or launch only programs with valid signatures. It can ture includes Certification Authorities (CAs) that issue certificates also evade anti-virus programs, which often forego scanning signed to software publishers, vouching for their identity. Publishers use binaries. Known from advanced threats such as Stuxnet and Flame, these certificates to sign the software they release, and users rely this type of abuse has not been measured systematically in the on these signatures to decide which software packages to trust broader malware landscape. In particular, the methods, effective- (rather than maintaining a list of trusted packages). If adversaries ness window, and security implications of code-signing PKI abuse can compromise code signing certificates, this has severe impli- are not well understood. We propose a threat model that highlights cations for end-host security. Signed malware can bypass system three types of weaknesses in the code-signing PKI. We overcome protection mechanisms that install or launch only programs with challenges specific to code-signing measurements by introducing valid signatures, and it can evade anti-virus programs, which often techniques for prioritizing the collection of code-signing certificates neglect to scan signed binaries.
    [Show full text]
  • Code Signing Requirements 2015-11-19
    Draft of Final Forum Guideline Version 1.0 Draft of November 19, 2015 CA/Browser Forum Baseline Requirements for the Issuance and Management of Publicly-Trusted Code Signing Certificates Copyright © 2015, The CA/Browser Forum, all rights reserved. Verbatim copying and distribution of this entire document is permitted in any medium without royalty, provided this notice is preserved. The CA/Browser Forum participants grant you a license to reproduce, distribute, make derivative works and display this entire document in any medium without royalty, provided this notice is preserved. If you make a translation of this document, we request that you prominently display the following statement in the language of the translation: “This document is a translation of the original English version. If a discrepancy arises between interpretations of this version and the original English version, the original English version governs.” i Draft of Final Forum Guideline Baseline Requirements for the Issuance and Management of Publicly-Trusted Code Signing Certificates Version 1.0, as adopted by the CA/Browser Forum on nn aaa nnnn. These requirements describe an integrated set of technologies, protocols, identity-proofing, lifecycle management, and auditing requirements that are minimum standards for the issuance and management of Code-Signing Certificates that are trusted because their corresponding Root Certificate is distributed in widely-available application software. These Requirements are not mandatory for Certification Authorities unless and until they become adopted and enforced by an Application Software Supplier. Notice to Readers This version of the Baseline Requirements for the Issuance and Management of Publicly-Trusted Code Signing Certificates presents criteria established by the CA/Browser Forum for use by Certification Authorities when issuing, maintaining, and revoking publicly-trusted Code Signing Certificates.
    [Show full text]
  • Ensuring Audit Log Accountability Through Hash Based Techniques
    International Journal of Future Computer and Communication, Vol. 1, No. 4, December 2012 Ensuring Audit Log Accountability through Hash Based Techniques Rashmita Jena, M. Aparna, Chinmaya Sahu, Rajeev Ranjan, and Rajesh Atmakuri trying to meet his sales requirements for a fiscal year. He Abstract—Audit logs are now considered good practice and a might attempt to change the transaction dates to make it standard approach for business systems. The integrity of the appear that they had transpired within the previous fiscal year auditing records themselves is critical. By simply storing all the when, in reality, they had not. Consider a school database interactions in a separate audit log does not guarantee the where a student who receives a “F” in one of his subjects, in integrity of the log. Data tampering can be done through unauthorized access and in some cases through authorized users. which he needs at least a “B”, could be highly tempted to try Results of such action can be unpleasant for business and their to dishonestly change his grade to a “B” in the database. This clients. Therefore, a demand for audit log security is needed would be an example of a student who would have to hack more than ever. This paper describes a mechanism based on into the system, unless of course the student somehow had cryptographic hash functions and trusted timestamping that access to the database containing the grade. prevents an outsider or inside intruder from silently corrupting The above discussed examples provide just a few of the the audit log. In addition it is shown that the proposed mechanism can be realized in database systems with little reasons why someone might want to tamper with a database.
    [Show full text]
  • Digital Stamp and Signature Guide
    Division of Land Use Regulation Digital Stamp and Signature Guide Instructions for E‐Submission Digital Signatures Version 1 06/05/2020 File: lur_052 Table of Contents Section 1: State Board of Professional Engineers and Land Surveyors Rules 1.1: 13:40-8.1A DIGITAL SIGNATURES AND SEALS…………………………………………………...1 Section 2: Overview……………………………………………………………………………………………………2 Section 3 Glossary of Terms…………………………………………………………………………………………2 Section 4: How Authentication Works……………………………………………………………………………..2 Section 5: Digital Signing and Sealing Plans-Example 1.………………….…………………………………..4 5.1: Bluebeam REVU Digital Signature and Seal Setup………………………………………………..4 5.2: Bluebeam Signature and Seal – Demonstration………………………………………………...…7 Section 6 Digital Signing and Sealing Plans-Example 2.…………………………………………..…………10 6.1: Adobe Signature and Seal Setup……………………………………………………….…………...10 6.2: Adobe Signature and Seal – Demonstration……………………………………………………....15 Digital Signature and Seal Guide Division of Land Use Regulation The NJ Board of Professional Engineers (PE) and Land Surveyors adopted rules for digital signatures and seals in November of 2015. Any electronic plans submitted to the Division of Land Use Regulation, where a signed and sealed plan is required, shall comply with the NJ Administrative Code governing the State Board of Professional Engineers and Land Surveyors. As a point of reference, below is the section of PE rules applicable to digital signatures and seals: N.J.A.C. 13:40-8.1A DIGITAL SIGNATURES AND SEALS a) A digital signature and seal shall carry the same weight, authority, and effect as a handwritten signature and impression-type seal when the following criteria are met: 1) The digital signing and sealing process satisfies the requirements of the Digital Signature Standard (DSS) established by the National Institute of Standards and Technology, FIPS PUB 186-4, Digital Signature Algorithm Validation System, (2014), which is hereby incorporated by reference, as amended and supplemented.
    [Show full text]
  • Virtualpatent - Enabling the Traceability of Ideas Shared Online Using Decentralized Trusted Timestamping
    Bibliographic Details BibTeX, EndNote… Related Work Authors’ Details VirtualPatent - Enabling the Traceability of Ideas Shared Online using Decentralized Trusted Timestamping Corinna Breitinger Bela Gipp Department of Computer and Department of Computer and Information Science Information Science University of Konstanz University of Konstanz [email protected] [email protected] Abstract Online discussion and sharing platforms have enabled ideas to be disseminated more quickly than ever before. However, there are many good reasons why individuals hesitate to share their ideas online. In academia, for instance, researchers may not want their contribution to be made public until after it has been published to ensure that they are appropriately credited for their work. As a consequence, novel ideas or creative work tend to only be shared within a small circle of trusted peers instead of with wider audiences online. This status quo prevents other experts on a specific topic from contributing to the discussion. In this paper, we present a proof-of-concept implementation of an online discussion and sharing platform that addresses this problem. The web- based application, coined VirtualPatent, automatically timestamps each post a user shares by creating a distributed timestamp on the blockchain of the cryptocurrency Bitcoin – a method for trusted-timestamp creation that we published in a previous paper. Unlike platform-managed timestamps, timestamps stored on the blockchain are persistent and cannot be tampered with. The system thus enables the author of a posting made online to retrospectively prove the exact time that the specific contribution was first put forth in a tamperproof manner – similar to a published paper, but with the simplicity of writing a post on a social media website.
    [Show full text]
  • Electronic Signature Formats
    ETSI TS 101 733 V1.3.1 (2002-02) Technical Specification Electronic signature formats 2 ETSI TS 101 733 V1.3.1 (2002-02) Reference RTS/SEC-004009 Keywords IP, electronic signature, security ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2002. All rights reserved. ETSI 3 ETSI TS 101 733 V1.3.1 (2002-02) Contents Intellectual Property
    [Show full text]
  • TR-4569: Security Hardening Guide for Netapp ONTAP 9
    Technical Report Security Hardening Guide for NetApp ONTAP 9 Guidelines for Secure Deployment of ONTAP 9 Product Security Team, NetApp December 2020 | TR-4569 Abstract This technical report provides guidance and configuration settings for NetApp® ONTAP® 9 to help organizations meet prescribed security objectives for information system confidentiality, integrity, and availability. TABLE OF CONTENTS Introduction ................................................................................................................................................. 4 ONTAP image validation ............................................................................................................................ 4 Upgrade image validation ........................................................................................................................................ 4 Boot-time image validation ...................................................................................................................................... 4 Local storage administrator accounts ...................................................................................................... 4 Roles, applications, and authentication ................................................................................................................... 4 Default administrative accounts ............................................................................................................................... 7 Certificate-based API access..................................................................................................................................
    [Show full text]
  • NIST SP 800-102, Recommendation for Digital Signature Timeliness
    NIST Special Publication 800-102 Recommendation for Digital Signature Timeliness Elaine Barker Computer Security Division Information Technology Laboratory C O M P U T E R S E C U R I T Y September 2009 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Deputy Director Abstract Establishing the time when a digital signature was generated is often a critical consideration. A signed message that includes the (purported) signing time provides no assurance that the private key was used to sign the message at that time unless the accuracy of the time can be trusted. With the appropriate use of digital signature-based timestamps from a Trusted Timestamp Authority (TTA) and/or verifier-supplied data that is included in the signed message, the signatory can provide some level of assurance about the time that the message was signed. KEY WORDS: digital signatures, timeliness, timestamp, Trusted Timestamp Authority ii Acknowledgements The National Institute of Standards and Technology (NIST) gratefully acknowledges and appreciates contributions by Rich Davis from the National Security Agency concerning the many security issues associated with this Recommendation. NIST also thanks the many contributions by the public and private sectors whose thoughtful and constructive comments improved the quality and usefulness of this publication. iii Table of Contents 1 Introduction................................................................................................ 5 2 Authority...................................................................................................
    [Show full text]
  • Eternity Wall
    Eternity Wall Eternity Wall - https://eternitywall.com | Riccardo Casatta - @RCasatta Agenda ● Timestamping ● OpenTimestamps Eternity Wall - https://eternitywall.com | Riccardo Casatta - @RCasatta Timestamping ● What’s timestamping? ● How we can use the Blockchain for timestamping? ● Why Blockchain? Eternity Wall - https://eternitywall.com | Riccardo Casatta - @RCasatta What’s timestamping? ● Giving a certain date to a document ○ Eg. postmark of the postal office ○ It doesn’t help if the stamp is on the envelope ● Civil law requires dates on important document must be made by public official ○ Eg. from the notary if we are buying a house ● What about digital documents? Eternity Wall - https://eternitywall.com | Riccardo Casatta - @RCasatta What’s digital timestamping? ● Based on digital signature of a third party ● Based on certification authority ○ Eg. Italian PEC Eternity Wall - https://eternitywall.com | Riccardo Casatta - @RCasatta Timestamping ● What’s timestamping? ● How we can use the Blockchain for timestamping? ● Why Blockchain? Eternity Wall - https://eternitywall.com | Riccardo Casatta - @RCasatta How we can use Blockchain for timestamping? Genesis t t t block 0 1 2 Newer blocks Time Eternity Wall - https://eternitywall.com | Riccardo Casatta - @RCasatta How we can use Blockchain for timestamping? Hash Tx Genesis t t t t block 0 1 2 3 Newer blocks Time Eternity Wall - https://eternitywall.com | Riccardo Casatta - @RCasatta How we can use Blockchain for timestamping? Genesis t t t t t t t t block 0 1 2 3 4 5 6 7 Time Eternity
    [Show full text]
  • Securing Proof-Of-Work Ledgers Via Checkpointing
    Securing Proof-of-Work Ledgers via Checkpointing Dimitris Karakostas Aggelos Kiayias University of Edinburgh and IOHK University of Edinburgh and IOHK [email protected] [email protected] Abstract Our work explores mechanisms that secure a distributed ledger in the presence of adver- sarial mining majorities. Distributed ledgers based on the Proof-of-Work (PoW) paradigm are typically most vulnerable when mining participation is low. During these periods an attacker can mount devastating attacks, such as double spending or censorship of transac- tions. We put forth the first rigorous study of checkpointing as a mechanism to protect distributed ledgers from such 51% attacks. The core idea is to employ an external set of parties that assist the ledger by finalizing blocks shortly after their creation. This service takes the form of checkpointing and timestamping; checkpointing ensures low latency in a federated setting, while timestamping is fully decentralized. Contrary to existing check- pointing designs, ours is the first to ensure both consistency and liveness. We identify a previously undocumented attack against liveness, \block lead", which enables Denial-of- Service and censorship to take place in existing checkpointed settings. We showcase our results on a checkpointed version of Ethereum Classic, a system which recently suffered a 51% attack, and build a federated distributed checkpointing service, which provides high assurance with low performance requirements. Finally, we fully decentralize our scheme, in the form of timestamping on a secure distributed ledger, and evaluate its performance using Bitcoin and Ethereum. 1 Introduction During the early '80s, the seminal work of Shostak, Pease, and Lamport introduced the consensus problem [39, 49].
    [Show full text]