Matrix Inverse and LU Decomposition – 1 M

Total Page:16

File Type:pdf, Size:1020Kb

Matrix Inverse and LU Decomposition – 1 M Matrix Inverse Computation of the Matrix Inverse n×n A square matrix S 2 R is invertible if there exists a matrix We want to find the inverse of S 2 Rn×n, that is we want to find a −1 n×n S 2 R such that matrix X 2 Rn×n such that SX = I. −1 −1 S S = I and SS = I: I Let X:;j denote the jth column of X, i.e., X = (X:;1;:::;X:;n). Consider the matrix-matrix product SX. The jth column of SX is The matrix S−1 is called the inverse of S. the matrix-vector product SX:;j, i.e., SX = (SX:;1; : : : ; SX:;n). I An invertible matrix is also called non-singular. The jth column of the identity I is the jth unit vector A matrix is called non-invertible or singular if it is not invertible. e = (0;:::; 0; 1; 0;:::; 0)T . n×n j I A matrix S 2 cannot have two different inverses. R Hence SX = (SX:;1; : : : ; SX:;n) = (e1; : : : ; en) = I implies that we In fact, if X; Y 2 n×n are two matrices with XS = I and SY = I, R can compute the columns X ;:::;X of the inverse of S by then :;1 :;n X = XI = X(SY ) = (XS)Y = IY = Y: solving n systems of linear equations n×n −1 −1 I If S 2 R is invertible, then Sx = f implies x = S Sx = S f, SX:;1 = e1; i.e., for every f the linear system Sx = f has a solution x = S−1f. The linear system Sx = f cannot have more than one solution . because Sx = f and Sy = f imply S(x − y) = Sx − Sy = f − f = 0 and x − y = S−10 = 0. SX:;n = en: Hence if S is invertible, then for every f the linear system Sx = f has the unique solution x = S−1f. Note that if for every f the linear system Sx = f has a unique I We will see later that if for every f the linear system Sx = f has a solution x, then there exists a unique X = (X:;1;:::;X:;n) with unique solution x, then S is invertible. SX = I. M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition { 1 M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition { 2 Want inverse of 01 0 21 LU-Decomposition S = 2 −1 3 : Consider @ A 0 1 4 1 8 1 0 2 S = @2 −1 3A : Use Gaussian Elimination to solve the systems 4 1 8 SX = e ; SX = e ; SX = e for the three columns of X = S−1 :;1 1 :;2 2 :;3 3 Express Gaussian Elimination using Matrix-Matrix-multiplications 0 1 0 1 1 0 2 1 0 0 1 0 2 1 0 0 0 1 0 0 1 0 1 0 2 1 0 1 0 2 1 @ 2 −1 3 0 1 0 A ! @ 0 −1 −1 −2 1 0 A @ −2 1 0 A @ 2 −1 3 A = @ 0 −1 −1 A 4 1 8 0 0 1 0 1 0 −4 0 1 −4 0 1 4 1 8 0 1 0 0 1 | {z } | {z } | {z } 1 0 2 1 0 0 =E1 =S =E1S 0 1 0 1 0 1 ! @ 0 −1 −1 −2 1 0 A 1 0 0 1 0 2 1 0 2 0 0 −1 −6 1 1 @ 0 1 0 A @ 0 −1 −1 A = @ 0 −1 −1 A 0 1 1 0 1 0 0 0 −1 0 1 0 0 −11 2 2 1 0 1 0 0 −11 2 2 1 | {z } | {z } | {z } ! @ 0 −1 0 4 0 −1 A ! @ 0 1 0 −4 0 1 A : =E2 =E1S =E2E1S=U 0 0 −1 −6 1 1 0 0 1 6 −1 −1 Inverses of E1 and E2 can be easily computed: 0 −11 2 2 1 0 1 0 0 1 0 1 0 0 1 −1 −1 −1 S = @ −4 0 1 A : E1 = @ 2 1 0 A ;E2 = @ 0 1 0 A : 6 −1 −1 4 0 1 0 −1 1 M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition { 3 M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition { 4 We have If we have computed the LU decomposition E2E1S = U S = LU; then we can use it to solve Hence Sx = f: −1 −1 −1 E1S = E2 U; and S = E1 E2 U: We replace S by LU, LUx = f; and introduce y = Ux. This leads to the two linear systems 01 0 21 0 1 0 0 1 0 1 0 0 1 0 1 0 2 1 Ly = f and Ux = y: @2 −1 3A = @ 2 1 0 A @ 0 1 0 A @ 0 −1 −1 A 4 1 8 4 0 1 0 −1 1 0 0 −1 Since L is lower triangular and U is upper triangular, these two systems can be easily solved. | {z } | {z } | {z } | {z } Example: =S =E−1 =E−1 =U 1 2 0 1 0 1 0 1 0 1 0 1 0 1 1 0 2 1 0 0 1 0 2 −4 1 0 0 1 0 2 @2 −1 3A = @ 2 1 0 A @ 0 −1 −1 A; f = @ −6 A 4 1 8 4 −1 1 0 0 −1 −15 = @ 2 1 0 A @ 0 −1 −1 A | {z } | {z } | {z } 4 −1 1 0 0 −1 =S =L =U | {z } | {z } 0 1 0 0 1 0 y 1 0 −4 1 0 y 1 0−41 =E−1E−1=L =U 1 1 1 2 @ 2 1 0 A @ y2 A = @ −6 A ) @ y2 A = @ 2 A 4 −1 1 y3 −15 y3 3 | {z } | {z } Hence we have the LU-Decomposition of S, =L =f 0 1 0 1 0 1 0 1 0 1 S = LU; 1 0 2 x1 −4 x1 2 @ 0 −1 −1 A @ x2 A = @ 2 A ) @ x2 A = @ 1 A 0 0 −1 x3 3 x3 −3 where L is a lower triangular matrix and U is an upper triangular matrix. | {z } | {z } =U =y In Matlab compute using [L,U]=lu(S). M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition { 5 M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition { 6 In Matlab the matrix inverse is computed using the LU decomposition. Execute the following: Given S, we want to compute S−1. Recall that the columns n = input('Problem size = '); X ;:::;X of the inverse S−1 = X are the solutions of :;1 :;n S = rand(n,n); f = rand(n,1); SX:;1 = e1; . ntry = 50; . SX:;n = en: tic for i = 1:ntry If we have computed the LU decomposition x = S\f; end S = LU; toc tic then we can use it to solve the n linear systems SX:;j = ej, j = 1; : : : n. Use the LU decomposition to compute the inverse of for i = 1:ntry Sinv = inv(S); 01 0 21 0 1 0 0 1 0 1 0 2 1 x = Sinv*f; 2 −1 3 = 2 1 0 0 −1 −1 end @ A @ A @ A toc 4 1 8 4 −1 1 0 0 −1 | {z } | {z } | {z } =S =L =U tic [L,U] =lu(S); What do you think of the following approach to solve Sx = f: for i = 1:ntry x = U\(L\f); >> Sinv = inv(S); end >> x = Sinv*f; toc M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition { 7 M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition { 8.
Recommended publications
  • Recursive Approach in Sparse Matrix LU Factorization
    51 Recursive approach in sparse matrix LU factorization Jack Dongarra, Victor Eijkhout and the resulting matrix is often guaranteed to be positive Piotr Łuszczek∗ definite or close to it. However, when the linear sys- University of Tennessee, Department of Computer tem matrix is strongly unsymmetric or indefinite, as Science, Knoxville, TN 37996-3450, USA is the case with matrices originating from systems of Tel.: +865 974 8295; Fax: +865 974 8296 ordinary differential equations or the indefinite matri- ces arising from shift-invert techniques in eigenvalue methods, one has to revert to direct methods which are This paper describes a recursive method for the LU factoriza- the focus of this paper. tion of sparse matrices. The recursive formulation of com- In direct methods, Gaussian elimination with partial mon linear algebra codes has been proven very successful in pivoting is performed to find a solution of Eq. (1). Most dense matrix computations. An extension of the recursive commonly, the factored form of A is given by means technique for sparse matrices is presented. Performance re- L U P Q sults given here show that the recursive approach may per- of matrices , , and such that: form comparable to leading software packages for sparse ma- LU = PAQ, (2) trix factorization in terms of execution time, memory usage, and error estimates of the solution. where: – L is a lower triangular matrix with unitary diago- nal, 1. Introduction – U is an upper triangular matrix with arbitrary di- agonal, Typically, a system of linear equations has the form: – P and Q are row and column permutation matri- Ax = b, (1) ces, respectively (each row and column of these matrices contains single a non-zero entry which is A n n A ∈ n×n x where is by real matrix ( R ), and 1, and the following holds: PPT = QQT = I, b n b, x ∈ n and are -dimensional real vectors ( R ).
    [Show full text]
  • Matrix Analysis (Lecture 1)
    Matrix Analysis (Lecture 1) Yikun Zhang∗ March 29, 2018 Abstract Linear algebra and matrix analysis have long played a fundamen- tal and indispensable role in fields of science. Many modern research projects in applied science rely heavily on the theory of matrix. Mean- while, matrix analysis and its ramifications are active fields for re- search in their own right. In this course, we aim to study some fun- damental topics in matrix theory, such as eigen-pairs and equivalence relations of matrices, scrutinize the proofs of essential results, and dabble in some up-to-date applications of matrix theory. Our lecture will maintain a cohesive organization with the main stream of Horn's book[1] and complement some necessary background knowledge omit- ted by the textbook sporadically. 1 Introduction We begin our lectures with Chapter 1 of Horn's book[1], which focuses on eigenvalues, eigenvectors, and similarity of matrices. In this lecture, we re- view the concepts of eigenvalues and eigenvectors with which we are familiar in linear algebra, and investigate their connections with coefficients of the characteristic polynomial. Here we first outline the main concepts in Chap- ter 1 (Eigenvalues, Eigenvectors, and Similarity). ∗School of Mathematics, Sun Yat-sen University 1 Matrix Analysis and its Applications, Spring 2018 (L1) Yikun Zhang 1.1 Change of basis and similarity (Page 39-40, 43) Let V be an n-dimensional vector space over the field F, which can be R, C, or even Z(p) (the integers modulo a specified prime number p), and let the list B1 = fv1; v2; :::; vng be a basis for V.
    [Show full text]
  • Lecture 5 - Triangular Factorizations & Operation Counts
    Lecture 5 - Triangular Factorizations & Operation Counts LU Factorization We have seen that the process of GE essentially factors a matrix A into LU. Now we want to see how this factorization allows us to solve linear systems and why in many cases it is the preferred algorithm compared with GE. Remember on paper, these methods are the same but computationally they can be different. First, suppose we want to solve A~x = ~b and we are given the factorization A = LU. It turns out that the system LU~x = ~b is \easy" to solve because we do a forward solve L~y = ~b and then back solve U~x = ~y. We have seen that we can easily implement the equations for the back solve and for homework you will write out the equations for the forward solve. Example If 0 2 −1 2 1 0 1 0 0 1 0 2 −1 2 1 A = @ 4 1 9 A = LU = @ 2 1 0 A @ 0 3 5 A 8 5 24 4 3 1 0 0 1 solve the linear system A~x = ~b where ~b = (0; −5; −16)T . ~ We first solve L~y = b to get y1 = 0, 2y1 +y2 = −5 implies y2 = −5 and 4y1 +3y2 +y3 = −16 T implies y3 = −1. Now we solve U~x = ~y = (0; −5; −1) . Back solving yields x3 = −1, 3x2 + 5x3 = −5 implies x2 = 0 and finally 2x1 − x2 + 2x3 = 0 implies x1 = 1 giving the solution (1; 0; −1)T . If GE and LU factorization are equivalent on paper, why would one be computationally advantageous in some settings? Recall that when we solve A~x = ~b by GE we must also multiply the right hand side by the Gauss transformation matrices.
    [Show full text]
  • LU Factorization LU Decomposition LU Decomposition: Motivation LU Decomposition
    LU Factorization LU Decomposition To further improve the efficiency of solving linear systems Factorizations of matrix A : LU and QR A matrix A can be decomposed into a lower triangular matrix L and upper triangular matrix U so that LU Factorization Methods: Using basic Gaussian Elimination (GE) A = LU ◦ Factorization of Tridiagonal Matrix ◦ LU decomposition is performed once; can be used to solve multiple Using Gaussian Elimination with pivoting ◦ right hand sides. Direct LU Factorization ◦ Similar to Gaussian elimination, care must be taken to avoid roundoff Factorizing Symmetrix Matrices (Cholesky Decomposition) ◦ errors (partial or full pivoting) Applications Special Cases: Banded matrices, Symmetric matrices. Analysis ITCS 4133/5133: Intro. to Numerical Methods 1 LU/QR Factorization ITCS 4133/5133: Intro. to Numerical Methods 2 LU/QR Factorization LU Decomposition: Motivation LU Decomposition Forward pass of Gaussian elimination results in the upper triangular ma- trix 1 u12 u13 u1n 0 1 u ··· u 23 ··· 2n U = 0 0 1 u3n . ···. 0 0 0 1 ··· We can determine a matrix L such that LU = A , and l11 0 0 0 l l 0 ··· 0 21 22 ··· L = l31 l32 l33 0 . ···. . l l l 1 n1 n2 n3 ··· ITCS 4133/5133: Intro. to Numerical Methods 3 LU/QR Factorization ITCS 4133/5133: Intro. to Numerical Methods 4 LU/QR Factorization LU Decomposition via Basic Gaussian Elimination LU Decomposition via Basic Gaussian Elimination: Algorithm ITCS 4133/5133: Intro. to Numerical Methods 5 LU/QR Factorization ITCS 4133/5133: Intro. to Numerical Methods 6 LU/QR Factorization LU Decomposition of Tridiagonal Matrix Banded Matrices Matrices that have non-zero elements close to the main diagonal Example: matrix with a bandwidth of 3 (or half band of 1) a11 a12 0 0 0 a21 a22 a23 0 0 0 a32 a33 a34 0 0 0 a43 a44 a45 0 0 0 a a 54 55 Efficiency: Reduced pivoting needed, as elements below bands are zero.
    [Show full text]
  • LU-Factorization 1 Introduction 2 Upper and Lower Triangular Matrices
    MAT067 University of California, Davis Winter 2007 LU-Factorization Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 12, 2007) 1 Introduction Given a system of linear equations, a complete reduction of the coefficient matrix to Reduced Row Echelon (RRE) form is far from the most efficient algorithm if one is only interested in finding a solution to the system. However, the Elementary Row Operations (EROs) that constitute such a reduction are themselves at the heart of many frequently used numerical (i.e., computer-calculated) applications of Linear Algebra. In the Sections that follow, we will see how EROs can be used to produce a so-called LU-factorization of a matrix into a product of two significantly simpler matrices. Unlike Diagonalization and the Polar Decomposition for Matrices that we’ve already encountered in this course, these LU Decompositions can be computed reasonably quickly for many matrices. LU-factorizations are also an important tool for solving linear systems of equations. You should note that the factorization of complicated objects into simpler components is an extremely common problem solving technique in mathematics. E.g., we will often factor a polynomial into several polynomials of lower degree, and one can similarly use the prime factorization for an integer in order to simply certain numerical computations. 2 Upper and Lower Triangular Matrices We begin by recalling the terminology for several special forms of matrices. n×n A square matrix A =(aij) ∈ F is called upper triangular if aij = 0 for each pair of integers i, j ∈{1,...,n} such that i>j. In other words, A has the form a11 a12 a13 ··· a1n 0 a22 a23 ··· a2n A = 00a33 ··· a3n .
    [Show full text]
  • A Singularly Valuable Decomposition: the SVD of a Matrix Dan Kalman
    A Singularly Valuable Decomposition: The SVD of a Matrix Dan Kalman Dan Kalman is an assistant professor at American University in Washington, DC. From 1985 to 1993 he worked as an applied mathematician in the aerospace industry. It was during that period that he first learned about the SVD and its applications. He is very happy to be teaching again and is avidly following all the discussions and presentations about the teaching of linear algebra. Every teacher of linear algebra should be familiar with the matrix singular value deco~??positiolz(or SVD). It has interesting and attractive algebraic properties, and conveys important geometrical and theoretical insights about linear transformations. The close connection between the SVD and the well-known theo1-j~of diagonalization for sylnmetric matrices makes the topic immediately accessible to linear algebra teachers and, indeed, a natural extension of what these teachers already know. At the same time, the SVD has fundamental importance in several different applications of linear algebra. Gilbert Strang was aware of these facts when he introduced the SVD in his now classical text [22, p. 1421, obselving that "it is not nearly as famous as it should be." Golub and Van Loan ascribe a central significance to the SVD in their defini- tive explication of numerical matrix methods [8, p, xivl, stating that "perhaps the most recurring theme in the book is the practical and theoretical value" of the SVD. Additional evidence of the SVD's significance is its central role in a number of re- cent papers in :Matlgenzatics ivlagazine and the Atnericalz Mathematical ilironthly; for example, [2, 3, 17, 231.
    [Show full text]
  • LU, QR and Cholesky Factorizations Using Vector Capabilities of Gpus LAPACK Working Note 202 Vasily Volkov James W
    LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs LAPACK Working Note 202 Vasily Volkov James W. Demmel Computer Science Division Computer Science Division and Department of Mathematics University of California at Berkeley University of California at Berkeley Abstract GeForce Quadro GeForce GeForce GPU name We present performance results for dense linear algebra using 8800GTX FX5600 8800GTS 8600GTS the 8-series NVIDIA GPUs. Our matrix-matrix multiply routine # of SIMD cores 16 16 12 4 (GEMM) runs 60% faster than the vendor implementation in CUBLAS 1.1 and approaches the peak of hardware capabilities. core clock, GHz 1.35 1.35 1.188 1.458 Our LU, QR and Cholesky factorizations achieve up to 80–90% peak Gflop/s 346 346 228 93.3 of the peak GEMM rate. Our parallel LU running on two GPUs peak Gflop/s/core 21.6 21.6 19.0 23.3 achieves up to ~300 Gflop/s. These results are accomplished by memory bus, MHz 900 800 800 1000 challenging the accepted view of the GPU architecture and memory bus, pins 384 384 320 128 programming guidelines. We argue that modern GPUs should be viewed as multithreaded multicore vector units. We exploit bandwidth, GB/s 86 77 64 32 blocking similarly to vector computers and heterogeneity of the memory size, MB 768 1535 640 256 system by computing both on GPU and CPU. This study flops:word 16 18 14 12 includes detailed benchmarking of the GPU memory system that Table 1: The list of the GPUs used in this study. Flops:word is the reveals sizes and latencies of caches and TLB.
    [Show full text]
  • QUADRATIC FORMS and DEFINITE MATRICES 1.1. Definition of A
    QUADRATIC FORMS AND DEFINITE MATRICES 1. DEFINITION AND CLASSIFICATION OF QUADRATIC FORMS 1.1. Definition of a quadratic form. Let A denote an n x n symmetric matrix with real entries and let x denote an n x 1 column vector. Then Q = x’Ax is said to be a quadratic form. Note that a11 ··· a1n . x1 Q = x´Ax =(x1...xn) . xn an1 ··· ann P a1ixi . =(x1,x2, ··· ,xn) . P anixi 2 (1) = a11x1 + a12x1x2 + ... + a1nx1xn 2 + a21x2x1 + a22x2 + ... + a2nx2xn + ... + ... + ... 2 + an1xnx1 + an2xnx2 + ... + annxn = Pi ≤ j aij xi xj For example, consider the matrix 12 A = 21 and the vector x. Q is given by 0 12x1 Q = x Ax =[x1 x2] 21 x2 x1 =[x1 +2x2 2 x1 + x2 ] x2 2 2 = x1 +2x1 x2 +2x1 x2 + x2 2 2 = x1 +4x1 x2 + x2 1.2. Classification of the quadratic form Q = x0Ax: A quadratic form is said to be: a: negative definite: Q<0 when x =06 b: negative semidefinite: Q ≤ 0 for all x and Q =0for some x =06 c: positive definite: Q>0 when x =06 d: positive semidefinite: Q ≥ 0 for all x and Q = 0 for some x =06 e: indefinite: Q>0 for some x and Q<0 for some other x Date: September 14, 2004. 1 2 QUADRATIC FORMS AND DEFINITE MATRICES Consider as an example the 3x3 diagonal matrix D below and a general 3 element vector x. 100 D = 020 004 The general quadratic form is given by 100 x1 0 Q = x Ax =[x1 x2 x3] 020 x2 004 x3 x1 =[x 2 x 4 x ] x2 1 2 3 x3 2 2 2 = x1 +2x2 +4x3 Note that for any real vector x =06 , that Q will be positive, because the square of any number is positive, the coefficients of the squared terms are positive and the sum of positive numbers is always positive.
    [Show full text]
  • LU and Cholesky Decompositions. J. Demmel, Chapter 2.7
    LU and Cholesky decompositions. J. Demmel, Chapter 2.7 1/14 Gaussian Elimination The Algorithm — Overview Solving Ax = b using Gaussian elimination. 1 Factorize A into A = PLU Permutation Unit lower triangular Non-singular upper triangular 2/14 Gaussian Elimination The Algorithm — Overview Solving Ax = b using Gaussian elimination. 1 Factorize A into A = PLU Permutation Unit lower triangular Non-singular upper triangular 2 Solve PLUx = b (for LUx) : − LUx = P 1b 3/14 Gaussian Elimination The Algorithm — Overview Solving Ax = b using Gaussian elimination. 1 Factorize A into A = PLU Permutation Unit lower triangular Non-singular upper triangular 2 Solve PLUx = b (for LUx) : − LUx = P 1b − 3 Solve LUx = P 1b (for Ux) by forward substitution: − − Ux = L 1(P 1b). 4/14 Gaussian Elimination The Algorithm — Overview Solving Ax = b using Gaussian elimination. 1 Factorize A into A = PLU Permutation Unit lower triangular Non-singular upper triangular 2 Solve PLUx = b (for LUx) : − LUx = P 1b − 3 Solve LUx = P 1b (for Ux) by forward substitution: − − Ux = L 1(P 1b). − − 4 Solve Ux = L 1(P 1b) by backward substitution: − − − x = U 1(L 1P 1b). 5/14 Example of LU factorization We factorize the following 2-by-2 matrix: 4 3 l 0 u u = 11 11 12 . (1) 6 3 l21 l22 0 u22 One way to find the LU decomposition of this simple matrix would be to simply solve the linear equations by inspection. Expanding the matrix multiplication gives l11 · u11 + 0 · 0 = 4, l11 · u12 + 0 · u22 = 3, (2) l21 · u11 + l22 · 0 = 6, l21 · u12 + l22 · u22 = 3.
    [Show full text]
  • Arxiv:1805.04488V5 [Math.NA]
    GENERALIZED STANDARD TRIPLES FOR ALGEBRAIC LINEARIZATIONS OF MATRIX POLYNOMIALS∗ EUNICE Y. S. CHAN†, ROBERT M. CORLESS‡, AND LEILI RAFIEE SEVYERI§ Abstract. We define generalized standard triples X, Y , and L(z) = zC1 − C0, where L(z) is a linearization of a regular n×n −1 −1 matrix polynomial P (z) ∈ C [z], in order to use the representation X(zC1 − C0) Y = P (z) which holds except when z is an eigenvalue of P . This representation can be used in constructing so-called algebraic linearizations for matrix polynomials of the form H(z) = zA(z)B(z)+ C ∈ Cn×n[z] from generalized standard triples of A(z) and B(z). This can be done even if A(z) and B(z) are expressed in differing polynomial bases. Our main theorem is that X can be expressed using ℓ the coefficients of the expression 1 = Pk=0 ekφk(z) in terms of the relevant polynomial basis. For convenience, we tabulate generalized standard triples for orthogonal polynomial bases, the monomial basis, and Newton interpolational bases; for the Bernstein basis; for Lagrange interpolational bases; and for Hermite interpolational bases. We account for the possibility of common similarity transformations. Key words. Standard triple, regular matrix polynomial, polynomial bases, companion matrix, colleague matrix, comrade matrix, algebraic linearization, linearization of matrix polynomials. AMS subject classifications. 65F15, 15A22, 65D05 1. Introduction. A matrix polynomial P (z) ∈ Fm×n[z] is a polynomial in the variable z with coef- ficients that are m by n matrices with entries from the field F. We will use F = C, the field of complex k numbers, in this paper.
    [Show full text]
  • Math 2270 - Lecture 27 : Calculating Determinants
    Math 2270 - Lecture 27 : Calculating Determinants Dylan Zwick Fall 2012 This lecture covers section 5.2 from the textbook. In the last lecture we stated and discovered a number of properties about determinants. However, we didn’t talk much about how to calculate them. In fact, the only general formula was the nasty formula mentioned at the beginning, namely n det(A)= sgn(σ) a . X Y iσ(i) σ∈Sn i=1 We also learned a formula for calculating the determinant in a very special case. Namely, if we have a triangular matrix, the determinant is just the product of the diagonals. Today, we’re going to discuss how that special triangular case can be used to calculate determinants in a very efficient manner, and we’ll derive the nasty formula. We’ll also go over one other way of calculating a deter- minnat, the “cofactor expansion”, that, to be honest, is not all that useful computationally, but can be very useful when you need to prove things. The assigned problems for this section are: Section 5.2 - 1, 3, 11, 15, 16 1 1 Calculating the Determinant from the Pivots In practice, the easiest way to calculate the determinant of a general matrix is to use elimination to get an upper-triangular matrix with the same de- terminant, and then just calculate the determinant of the upper-triangular matrix by taking the product of the diagonal terms, a.k.a. the pivots. If there are no row exchanges required for the LU decomposition of A, then A = LU, and det(A)= det(L)det(U).
    [Show full text]
  • LU Decomposition S = LU, Then We Can  1 0 0   2 4 −2   2 4 −2  Use It to Solve Sx = F
    LU-Decomposition Example 1 Compare with Example 1 in gaussian elimination.pdf. Consider I The Gaussian elimination for the solution of the linear system Sx = f transforms the augmented matrix (Sjf) into (Ujc), where U 0 2 4 −21 is upper triangular. The transformations are determined by the S = 4 9 −3 : (1) matrix S only. @ A If we have to solve a system Sx = f~ with a different right hand side −2 −3 7 f~, then we start over. Most of the computations that lead us from We express Gaussian Elimination using Matrix-Matrix-multiplications (Sjf~) into (Ujc~), depend only on S and are identical to the steps that we executed when we applied Gaussian elimination to Sx = f. 0 1 0 0 1 0 2 4 −2 1 0 2 4 −2 1 We now express Gaussian elimination as a sequence of matrix-matrix I @ −2 1 0 A @ 4 9 −3 A = @ 0 1 1 A multiplications. This representation leads to the decomposition of S 1 0 1 −2 −3 7 0 1 5 into a product of a lower triangular matrix L and an upper triangular | {z } | {z } | {z } matrix U, S = LU. This is known as the LU-Decomposition of S. =E1 =S =E1S I If we have computed the LU decomposition S = LU, then we can 0 1 0 0 1 0 2 4 −2 1 0 2 4 −2 1 use it to solve Sx = f. @ 0 1 0 A @ 0 1 1 A = @ 0 1 1 A I We replace S by LU, 0 −1 1 0 1 5 0 0 4 LUx = f; | {z } | {z } | {z } and introduce y = Ux.
    [Show full text]