Entanglement and Decoherence in Loop Quantum Gravity Alexandre Feller

Total Page:16

File Type:pdf, Size:1020Kb

Entanglement and Decoherence in Loop Quantum Gravity Alexandre Feller Entanglement and Decoherence in Loop Quantum Gravity Alexandre Feller To cite this version: Alexandre Feller. Entanglement and Decoherence in Loop Quantum Gravity. Quantum Physics [quant-ph]. Université de Lyon, 2017. English. NNT : 2017LYSEN058. tel-01650029 HAL Id: tel-01650029 https://tel.archives-ouvertes.fr/tel-01650029 Submitted on 28 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Numéro National de Thèse : 2017LYSEN058 Thèse de Doctorat de l’Université de Lyon opérée par l’École Normale Supérieure de Lyon École Doctorale 52 École Doctorale de Physique et d’Astrophysique de Lyon Discipline : Physique Soutenue publiquement le : 23 Octobre 2017 par Alexandre FELLER Entanglement and Decoherence in Loop Quantum Gravity Intrication et décohérence en gravitation quantique à boucles Devant le jury composé de : Pascal DEGIOVANNI Directeur de recherche ENS de Lyon Examinateur Ivette FUENTES Professor University of Nottingham Examinatrice Etera LIVINE Directeur de recherche ENS de Lyon Directeur de thèse Daniele ORITI Senior Scientist Max Planck Institute Rapporteur Simone SPEZIALE Chargé de recherhe Aix-Marseille Université Examinateur Daniel TERNO Associate Professor Macquarie University Rapporteur 2 Remember... Pour moi, les meilleurs remerciements que l’on peut adresser ne prennent pas la forme de quelques mots, formant à cet instant le début de la fin de trois belles années de travail doctoral, mais la forme de souvenirs, dans ma mémoire. Quoi qu’il en soit, je vais essayer ici de modestement les partager bien que cela paraîtra au lecteur parfois flou et obscur. La thèse a commencé il y trois ans et ce fut trois années incroyables. Et naturellement Etera a toujours été là en tant que directeur de thèse, pour m’apprendre le travail de recherche, pour m’aider et me guider dans mes questions, mes interrogations, mes zones d’ombres. Ça a été un vrai plaisir de travailler ensemble. Pas très loin, dans l’autre couloir, Pascal est dans son dortoir... pardon bureau, et fait son petit repos... pardon boulot. Il a était lui aussi, et le sera encore, un peu mon mentor. Grande nouvelle pour beaucoup au labo, il n’a pas été mon directeur mais, il faut un moment l’avouer, a beaucoup contribué à mon travail de part les nombreuses discussions que nous avons eues. Tous les deux forment la base du petit chercheur que je suis et voudrais être. Toujours au labo, comment ne pas mentionner mes frères Daltons, Clément et Benjamin, avec qui nous avons tellement été sérieux, tous les jours au bureau sous le regard bienveillant de Sigmund, du matin tôt jusqu’au soir tard, à travailler d’arrache-pied nos papiers, à discuter sans s’arrêter de science, de philosophie, de politique, de tous les sujets. Notre seul dérapage a été de bloquer et d’enfumer un peu trop de laboratoire un vendredi pour le désinsectiser. Pardon Thierry pour ce dérangement, mais j’en pouvais plus de ces bestioles, mon travail allait perdre en efficacité. Bien sûr, nous n’étions pas que trois au laboratoire. Une pensée toute particulière pour Sylvain Joubs, Éric et Arnaud, pour les longs moments à la pause café, mais j’y reviendrai un peu plus loin. À Sylvain Gram aussi pour ces nombreuses heures en pleurs devant la profonde incompréhension de la renormalisation. Mais, je ne pourrai pas parler de tout le monde, ce serait beaucoup trop long. Une chose est certaine, ce laboratoire est épanouissant, vivant, drôle, rempli de personnes toujours prêtes à discuter, de science et de tous les sujets. C’est un endroit parfait pour un jeune chercheur, bien qu’attention, il ne faut pas trop se faire d’illusion, le reste du monde ne tourne pas aussi rond. En tout cas, merci à toutes les personnes avec qui j’ai discuté et rencontré ici. Pendant ces trois ans, j’ai eu aussi la chance de pouvoir enseigner la physique à l’ENS, peut-être au grand désespoir des étudiants. C’est dire, je faisais parti des enseignants à la 3 4 préparation à l’agrégation, même si je l’ai jamais passée, mais passons. Cette expérience, assez inattendue, fut vraiment très enrichissante. Elle m’a permis de rencontrer plein de nouvelles personnes, de travailler avec Arnaud, Joubs, Marc et Henning, qui ont toujours été à l’écoute et plein de conseils. Pensée spéciale pour Arnaud pour avoir été un si bon enseignant durant mes années d’études à l’École, pour les longues discussions au café, pas toujours très éthique et responsable. Enseigner n’est pas si facile mais c’est très gratifiant d’aider et de voir, dans le regard de quelqu’un, qu’il a compris quelque chose en partie grâce à vous. Étant encore gamin dans ma tête, j’ai pu surtout, en étant en contact avec les jeunes de l’école, la relève des vieux, me faire de nouveaux amis, Chris, Charles, Grégoire et d’autres encore. Certains ne se rappellent plus que je les ai eus en cours, étant encore en gueule de bois de la veille au soir... Cette thèse va bientôt s’achever par la soutenance, dans quelques jours, et il naturel de remercier l’ensemble des membres de jury, en particulier Ivette Fuentes, Simone Speziale, Daniele Oriti et Daniel Terno qui viennent de loin pour m’écouter et en particulier ces deux derniers pour avoir patiemment relu la thèse et m’avoir fait part de leur remarques. Finalement, ce travail n’aurait pas pu voir le jour sans l’ensemble des personnes du Laboratoire de Physique, du département de physique, de l’ENS de Lyon et de l’École doctorale. Un big up particulier pour les secrétaires du laboratoire, Laurence, Fatiha, Laure et Nadine pour tout le travail qu’elles font ainsi qu’à Jérôme au département. Merci à tous. Mais voila, ce n’est qu’une partie de l’histoire qui vient d’être écrite. Rien n’aurait pu aussi bien se passer si je n’avais pas si bien été entouré. Et là c’est une longue histoire. Elle pourrait commencer il y a longtemps, mais on va remonter à six ans lors de mon arrivé dans cette petite institution qu’est l’ENS de Lyon. Il n’est pas possible de décrire l’ensemble des souvenirs que j’ai ici et l’ensemble des personnes que j’ai connues. Clément d’abord pour les innombrables heures passées à jouer à des jeux tous plus improbables les uns que les autres, les mois d’entraînement sur le jeu le plus dur du monde, les discussions farfelues à la coloc et ta magnifique œuvre d’art biologique dont je ne parlerai pas plus. Noé pour tous les moments passés à regarder animés et films au lieu de bosser, où j’ai appris que les films primés à Cannes n’étaient pas fait pour moi (ni pour Clément d’ailleurs), pour toutes les bouffes qu’on a faites et pour m’avoir fait découvrir la voile. Benjamin pour ce sens de l’humour si particulier, ton sens de la réplique, ces discussions dont on taira les sujets et la passion que l’on partage à trasher les gens. Enfin, je pense à bien d’autres personnes encore, Guilhem, Grimaud, Paul, Solène, Quentin... Un peu plus tard, j’ai découvert les joies des soirées, du foyer et de la vie étudiante de l’École. Sans conteste, le centre névralgique de toute cette (ma) vie se trouve au babyfoot. Impossible de compter les heures passées là, ce serait indécent d’ailleurs. Lilou, Chris, Jerem, Percy, Dédé, Lulu, Sami, Anthony, tellement de rire, tellement de conneries, tellement de rage d’avoir perdu mes deux BO 69 que le mur de (l’ancien, RIP) foyer s’en est souvenu. Pour toutes ses soirées en Festive, en ville, ou tranquille chez les uns ou les autres, pour ces vacances à Nice au bord de la piscine, à manger, boire et chanter 5 du Jean-Jacques. En soirée, le baby est rarement accessible, mais le bière-pong est là pour pimenter les choses entre deux chorées. En dehors de l’école, il y a naturellement le Ninka, lieu où nous allons, après une dure journée de labeur, se délecter d’un petit apéro pour souvent ensuite finir au resto. Avec Arnaud à refaire le monde, avec Joubs qui finit en train de dormir sur la table ou Monsieur Éric, toujours increvable avec son sens de l’humour trash, avec Jerem, Léo et Chris. Un endroit simple pour s’enjailler. Au fil du temps, surtout pendant la thèse où de nombreux amis sont partis suivre divers horizons, j’ai appris à connaître de nouvelles personnes. Lilou d’abord, autour d’une crêpe lors d’une soirée d’intégration où l’on a appris que l’on partageait les mêmes intérêts en science. C’était il n’y a pas si longtemps finalement, mais depuis on a rattrapé le temps, par de nombreuses conversations, du babyfoot, en soirée ou à distance, à Lyon, à Paris ou à Nice. Jérémy aussi, partenaire de baby, de SC2 ou de OW. On en a fait des choses depuis ces trois dernières années. Avec Léo naturellement, toujours comme moi prête à bitcher, nous nous sommes évadés de tellement d’endroits.
Recommended publications
  • Immirzi Parameter Without Immirzi Ambiguity: Conformal Loop Quantization of Scalar-Tensor Gravity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive PHYSICAL REVIEW D 96, 084011 (2017) Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity † Olivier J. Veraguth* and Charles H.-T. Wang Department of Physics, University of Aberdeen, King’s College, Aberdeen AB24 3UE, United Kingdom (Received 25 May 2017; published 5 October 2017) Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field. DOI: 10.1103/PhysRevD.96.084011 I.
    [Show full text]
  • Arxiv:1108.1178V2 [Gr-Qc]
    Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model Aristide Baratin∗1 and Daniele Oriti†2 1Centre de Physique Th´eorique, CNRS UMR 7644, Ecole Polytechnique F-9112 Palaiseau Cedex, France 2Max-Planck-Institut f¨ur Gravitationsphysik Albert Einstein Institute Am M¨uhlenberg 2, 14476, Golm, Germany, EU A dual formulation of group field theories, obtained by a Fourier transform mapping functions on a group to functions on its Lie algebra, has been proposed recently. In the case of the Ooguri model for SO(4) BF theory, the variables of the dual field variables are thus so(4) bivectors, which have a direct interpretation as the discrete B variables. Here we study a modification of the model by means of a constraint operator implementing the simplicity of the bivectors, in such a way that projected fields describe metric tetrahedra. This involves a extension of the usual GFT framework, where boundary operators are labelled by projected spin network states. By construction, the Feynman amplitudes are simplicial path integrals for constrained BF theory. We show that the spin foam formulation of these amplitudes corresponds to a variant of the Barrett-Crane model for quantum gravity. We then re-examin the arguments against the Barrett-Crane model(s), in light of our construction. Introduction Group field theories (GFT) represent a second quantized framework for both spin networks and simplicial geometry [6, 7, 9], field theories on group manifolds (or Lie algebras) producing Feynman amplitudes which can be equivalently expressed as simplicial gravity path integrals [5] or spin foam models [10], in turn covariant formulations of spin networks dynamics [1]3.
    [Show full text]
  • Tsallis, Rényi and Sharma-Mittal Holographic Dark Energy Models in Loop Quantum Cosmology
    S S symmetry Article Tsallis, Rényi and Sharma-Mittal Holographic Dark Energy Models in Loop Quantum Cosmology Abdul Jawad 1 , Kazuharu Bamba 2,*, Muhammad Younas 1, Saba Qummer 1 and Shamaila Rani 1 1 Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore-54000, Pakistan; [email protected] or [email protected] (A.J.); [email protected] (M.Y.); [email protected] (S.Q.); [email protected] (S.R.) 2 Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima University, Fukushima 960-1296, Japan * Correspondence: [email protected] Received: 7 October 2018; Accepted: 31 October 2018; Published: 13 Novemebr 2018 Abstract: The cosmic expansion phenomenon is being studied through the interaction of newly proposed dark energy models (Tsallis, Rényi and Sharma-Mittal holographic dark energy (HDE) models) with cold dark matter in the framework of loop quantum cosmology. We investigate different cosmic implications such as equation of state parameter, squared sound speed and cosmological plane 0 0 (wd-wd, wd and wd represent the equation of state (EoS) parameter and its evolution, respectively). It is found that EoS parameter exhibits quintom like behavior of the universe for all three models of HDE. The squared speed of sound represents the stable behavior of Rényi HDE and Sharma-Mittal 0 HDE at the latter epoch while unstable behavior for Tsallis HDE. Moreover, wd-wd plane lies in the thawing region for all three HDE models. Keywords: cosmoligical parameters; dark energy models; loop quantum cosmology 1. Introduction Observational data from type Ia supernovae (SNIa) [1–4], the large scale structure (LSS) [5–8] and the cosmic microwave background (CMB), anisotropies [9–11], tell us that the universe undergoes an accelerated expansion at the present time.
    [Show full text]
  • An Introduction to Loop Quantum Gravity with Application to Cosmology
    DEPARTMENT OF PHYSICS IMPERIAL COLLEGE LONDON MSC DISSERTATION An Introduction to Loop Quantum Gravity with Application to Cosmology Author: Supervisor: Wan Mohamad Husni Wan Mokhtar Prof. Jo~ao Magueijo September 2014 Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London Abstract The development of a quantum theory of gravity has been ongoing in the theoretical physics community for about 80 years, yet it remains unsolved. In this dissertation, we review the loop quantum gravity approach and its application to cosmology, better known as loop quantum cosmology. In particular, we present the background formalism of the full theory together with its main result, namely the discreteness of space on the Planck scale. For its application to cosmology, we focus on the homogeneous isotropic universe with free massless scalar field. We present the kinematical structure and the features it shares with the full theory. Also, we review the way in which classical Big Bang singularity is avoided in this model. Specifically, the spectrum of the operator corresponding to the classical inverse scale factor is bounded from above, the quantum evolution is governed by a difference rather than a differential equation and the Big Bang is replaced by a Big Bounce. i Acknowledgement In the name of Allah, the Most Gracious, the Most Merciful. All praise be to Allah for giving me the opportunity to pursue my study of the fundamentals of nature. In particular, I am very grateful for the opportunity to explore loop quantum gravity and its application to cosmology for my MSc dissertation.
    [Show full text]
  • Observational Test of Inflation in Loop Quantum Cosmology
    AEI-2011-042 Observational test of inflation in loop quantum cosmology Martin Bojowald1, Gianluca Calcagni2, and Shinji Tsujikawa3 1Institute for Gravitation and the Cosmos, The Pennsylvania State University 104 Davey Lab, University Park, PA 16802, U.S.A. 2Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am M¨uhlenberg 1, D-14476 Golm, Germany 3Department of Physics, Faculty of Science, Tokyo University of Science 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan E-mail: [email protected], [email protected], [email protected] Abstract: We study in detail the power spectra of scalar and tensor perturbations generated during inflation in loop quantum cosmology (LQC). After clarifying in a novel quantitative way how inverse-volume corrections arise in inhomogeneous set- tings, we show that they can generate large running spectral indices, which generally lead to an enhancement of power at large scales. We provide explicit formulas for the scalar/tensor power spectra under the slow-roll approximation, by taking into ac- count corrections of order higher than the runnings. We place observational bounds on the inverse-volume quantum correction δ a−σ (σ> 0, a is the scale factor) and arXiv:1107.1540v1 [gr-qc] 8 Jul 2011 ∝ the slow-roll parameter ǫV for power-law potentials as well as exponential potentials by using the data of WMAP 7yr combined with other observations. We derive the constraints on δ for two pivot wavenumbers k0 for several values of δ. The quadratic potential can be compatible with the data even in the presence of the LQC correc- tions, but the quartic potential is in tension with observations.
    [Show full text]
  • On Superstatistics and Black Hole Quasinormal Modes
    On superstatistics and black hole quasinormal modes. Aldo Mart´ınez-Merinoa , M. Sabidob a Departamento de Ciencias Naturales y Exactas, CU Valles, Universidad de Guadalajara. Carretera Guadalajara - Ameca Km. 45.5, C.P. 46600, Ameca, Jalisco, M´exico. b Departamento de F´ısicade la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Le´on,Guanajuato, M´exico. Abstract It is known that one can determine that lowest value of spin is jmin = 1, by using the quasinormal modes of black holes, the Bekenstein-Hawking entropy and Boltzmann-Gibbs statistics. In this paper, to determine jmin, we have used non extensive entropies that depend only on the probability (known as Obregon’s entropies and have been derived from superstatistics), as well as non extensive entropies that have free parameters . We find that jmin depends on the area and the non extensive parameter. In particular, for the non extensive entropies that only depend on the probability and find that the modification is only present for micro black holes. For classical black holes, the results are the same as for the Boltzmann-Gibbs statistics. 1. Introduction Black holes are one of the most enigmatic and enticing objects of study and just recently, a direct verification of their existence was provided by Event Horizon Telescope collaboration [1]. Despite the amount of research on the subject there are several unanswered questions. Quantization of black holes was proposed in the pioneering work of Bekenstein [2], he suggested that the surface gravity is proportional to its temperature and that the area of its event horizon is proportional to its entropy.
    [Show full text]
  • Gravitational Axial Perturbations and Quasinormal Modes of Loop Quantum Black Holes
    Eur. Phys. J. C (2019) 79:157 https://doi.org/10.1140/epjc/s10052-019-6565-2 Regular Article - Theoretical Physics Gravitational axial perturbations and quasinormal modes of loop quantum black holes M. B. Cruz1,a,C.A.S.Silva2,b,F.A.Brito1,3,c 1 Departamento de Física, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-970, Brazil 2 Instituto Federal de Educação Ciência e Tecnologia da Paraíba (IFPB), Campus Campina Grande-Rua Tranquilino Coelho Lemos 671, Jardim Dinamérica I, João Pessoa, Brazil 3 Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, Campina Grande 58429-900, Paraíba, Brazil Received: 3 November 2018 / Accepted: 3 January 2019 / Published online: 21 February 2019 © The Author(s) 2019 Abstract Loop quantum gravity (LQG) is a theory that pro- ular, in the context of this theory, a black hole metric known as poses a way to model the behavior of the spacetime in sit- loop quantum black hole (LQBH), or self-dual black hole, has uations where its atomic characteristic arises. Among these been proposed [10,11]. This solution corresponds to a quan- situations, the spacetime behavior near the Big Bang or black tum corrected Schwarzschild solution and possess the inter- hole’s singularity. The detection of gravitational waves, on esting property of self-duality. From this property, the black the other hand, has opened the way to new perspectives in the hole singularity is removed and replaced by another asymp- investigation of the spacetime structure. In this work, by the totically flat region, which is an expected effect in a quantum use of a WKB method introduced by Schutz and Will (Astro- gravity regime.
    [Show full text]
  • Immirzi Parameter and Noether Charges in First Order Gravity
    Immirzi parameter and Noether charges in first order gravity Remigiusz Durka Institute for Theoretical Physics, University of Wroc law, Pl. Maksa Borna 9, 50-204 Wroc law, Poland E-mail: [email protected] Abstract. The framework of SO(3, 2) constrained BF theory applied to gravity makes it possible to generalize formulas for gravitational diffeomorphic Noether charges (mass, angular momentum, and entropy). It extends Wald’s approach to the case of first order gravity with a negative cosmological constant, the Holst modification and the topological terms (Nieh-Yan, Euler, and Pontryagin). Topological invariants play essential role contributing to the boundary terms in the regularization scheme for the asymptotically AdS spacetimes, so that the differentiability of the action is automatically secured. Intriguingly, it turns out that the black hole thermodynamics does not depend on the Immirzi parameter for the AdS–Schwarzschild, AdS–Kerr, and topological black holes, whereas a nontrivial modification appears for the AdS–Taub–NUT spacetime, where it impacts not only the entropy, but also the total mass. 1. Black hole thermodynamics The discovery of the laws of black hole dynamics [1] has led to uncovering a remarkable analogy between gravity and thermodynamics. This is especially clear in the case of the first law κ dM = dA +ΩdJ (black hole dynamics) dE = T dS + dW (thermodynamics) , (1) 8πG arXiv:1111.0961v2 [gr-qc] 8 Nov 2011 where on the left we have black hole mass M, angular momentum J, angular velocity Ω, area of the event horizon A and surface gravity κ. The seminal works of Bekenstein [2, 3] and Hawking [4], relating the area of the event horizon with the entropy Area Entropy = , where l = G¯h/c3 , (2) 4l2 p p q and the surface gravity of a black hole with its temperature κ T emperature = ¯hc , (3) 2π have strongly suggested that this analogy might be in fact an identity.
    [Show full text]
  • Table of Contents (Print)
    PERIODICALS PHYSICAL REVIEW Dä For editorial and subscription correspondence, Postmaster send address changes to: please see inside front cover (ISSN: 1550-7998) APS Subscription Services P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 92, NUMBER 12 CONTENTS D15 DECEMBER 2015 The Table of Contents is a total listing of Parts A and B. Part A consists of articles 121301–124033, and Part B articles 124034–129902(E) PART A RAPID COMMUNICATIONS Hypermagnetic gyrotropy, inflation, and the baryon asymmetry of the Universe (5 pages) ...................................... 121301(R) Massimo Giovannini Beyond six parameters: Extending ΛCDM (5 pages) ................................................................................... 121302(R) Eleonora Di Valentino, Alessandro Melchiorri, and Joseph Silk Searching for features of a string-inspired inflationary model with cosmological observations (6 pages) ..................... 121303(R) Yi-Fu Cai, Elisa G. M. Ferreira, Bin Hu, and Jerome Quintin Primordial black holes as a novel probe of primordial gravitational waves (6 pages) ............................................ 121304(R) Tomohiro Nakama and Teruaki Suyama Kinetically modified nonminimal Higgs inflation in supergravity (6 pages) ........................................................ 121305(R) Constantinos Pallis Local quantum gravity (6 pages) ........................................................................................................... 121501(R) N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M.
    [Show full text]
  • A Note on the Holst Action, the Time Gauge, and the Barbero-Immirzi
    A note on the Holst action, the time gauge, and the Barbero-Immirzi parameter Marc Geiller1 and Karim Noui2, 3 1Institute for Gravitation and the Cosmos & Physics Department, Penn State, University Park, PA 16802, U.S.A. 2Laboratoire de Math´ematiques et Physique Th´eorique, Universit´eFran¸cois Rabelais, Parc de Grandmont, 37200 Tours, France 3Laboratoire APC – Astroparticule et Cosmologie, Universit´eParis Diderot Paris 7, 75013 Paris, France In this note, we review the canonical analysis of the Holst action in the time gauge, with a special emphasis on the Hamiltonian equations of motion and the fixation of the Lagrange multipliers. This enables us to identify at the Hamiltonian level the various components of the covariant torsion tensor, which have to be vanishing in order for the classical theory not to depend upon the Barbero-Immirzi parameter. We also introduce a formulation of three-dimensional gravity with an explicit phase space dependency on the Barbero-Immirzi parameter as a potential way to investigate its fate and relevance in the quantum theory. Introduction The Barbero-Immirzi parameter [1, 2] γ plays a rather intriguing role in loop quantum gravity. In the classical theory, this role can be analyzed both at the Lagrangian and at the Hamiltonian level. In the former case, the Barbero-Immirzi parameter is introduced as the coupling constant of a topological1 term that is added to the first order Hilbert-Palatini action in order to obtain the Holst action [3]. This topological term being vanishing once we resolve the torsion-free equations of motion in order to expresses the spin connection in terms of the tetrad, the Barbero-Immirzi parameter drops out of the classical theory in the absence of torsion.
    [Show full text]
  • Testing a Conjecture on the Origin of Space, Gravitation and Mass
    Testing a conjecture on the origin of space, gravitation and mass Christoph Schiller * Abstract A Planck-scale model for the microscopic degrees of freedom of space and gravitation is explored in detail. The conjectured model is based on a single fundamental princi- ple that involves fluctuating one-dimensional strands. First, the fundamental principle is used to deduce classical and quantum properties of space and gravitation, from the field equations of general relativity to gravitons. Secondly, the fundamental principle is used to deduce a detailed list of predictions. They include the lack of any change to general relativity at all sub-galactic scales, the validity of black hole thermodynamics, the lack of singularities, the lack of quantum foam, the lack of unknown observable quantum gravity effects, the maximum local momentum flow or force c4/4G,andthe maximum local luminosity or power c5/4G. All predictions are tested against exper- iments and are found to agree with observations so far. Finally, it is shown that the fundamental principle implies a model for elementary particles that allows deducing ab-initio upper and lower limits for their gravitational mass values. Keywords: general relativity; quantum gravity; particle mass; strand conjecture. PACS numbers: 04.20.-q (classical general relativity), 04.60.-m (quantum gravity), 12.60.-i (models beyond the standard model). * Motion Mountain Research, Munich, Germany, and Varese, Italy, [email protected] ORCID 0000-0002-8188-6282. 1 1 The quest to uncover the microscopic aspects of space and gravitation The nature of physical space and gravitation remains a matter of intense research. What are the microscopic degrees of freedom of black holes, the microscopic nature of the vacuum, and the microscopic details of curvature? Many possibilities have been proposed and explored [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
    [Show full text]
  • Covariant Loop Quantum Gravity
    Covariant Loop Quantum Gravity An elementary introduction to Quantum Gravity and Spinfoam Theory CARLO ROVELLI AND FRANCESCA VIDOTTO iii . Cover: Martin Klimas, ”Jimi Hendrix, House Burning Down”. Contents Preface page ix Part I Foundations 1 1 Spacetime as a quantum object 3 1.1 The problem 3 1.2 The end of space and time 6 1.3 Geometry quantized 9 1.4 Physical consequences of the existence of the Planck scale 18 1.4.1 Discreteness: scaling is finite 18 1.4.2 Fuzziness: disappearance of classical space and time 19 1.5 Graphs, loops and quantum Faraday lines 20 1.6 The landscape 22 1.7 Complements 24 1.7.1 SU(2) representations and spinors 24 1.7.2 Pauli matrices 27 1.7.3 Eigenvalues of the volume 29 2 Physics without time 31 2.1 Hamilton function 31 2.1.1 Boundary terms 35 2.2 Transition amplitude 36 2.2.1 Transition amplitude as an integral over paths 37 2.2.2 General properties of the transition amplitude 40 2.3 General covariant form of mechanics 42 2.3.1 Hamilton function of a general covariant system 45 2.3.2 Partial observables 46 2.3.3 Classical physics without time 47 2.4 Quantum physics without time 48 2.4.1 Observability in quantum gravity 51 2.4.2 Boundary formalism 52 2.4.3 Relational quanta, relational space 54 2.5 Complements 55 2.5.1 Example of timeless system 55 2.5.2 Symplectic structure and Hamilton function 57 iv v Contents 3 Gravity 59 3.1 Einstein’s formulation 59 3.2 Tetrads and fermions 60 3.2.1 An important sign 63 3.2.2 First-order formulation 64 3.3 Holst action and Barbero-Immirzi coupling constant 65 3.3.1
    [Show full text]