A BLOC-1–AP-3 Super-Complex Sorts a Cis-SNARE Complex Into

Total Page:16

File Type:pdf, Size:1020Kb

A BLOC-1–AP-3 Super-Complex Sorts a Cis-SNARE Complex Into ARTICLE ABLOC-1–AP-3 super-complex sorts a cis-SNARE complex into endosome-derived tubular transport carriers Shanna L. Bowman1,2,3,4,LinhLe1,2,3,5, Yueyao Zhu1,2,3,6, Dawn C. Harper1,2,3, Anand Sitaram1,2,3, Alexander C. Theos7, Elena V. Sviderskaya8, Downloaded from http://rupress.org/jcb/article-pdf/220/7/e202005173/1413924/jcb_202005173.pdf by St George's, University Of London user on 26 May 2021 Dorothy C. Bennett8, Graça Raposo-Benedetti9, David J. Owen10,MeganK.Dennis1,2,3,11,andMichaelS.Marks1,2,3 Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1–dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3–BLOC-1 super-complex. Introduction The endolysosomal system requires proper regulation of mem- and Südhof, 2012). In endosomal fusion, the four SNARE helices brane trafficking for maintenance of organelle identity, cargo can be differentially distributed among opposing membranes distribution, signaling, metabolic control, and organelle bio- (Zwilling et al., 2007). A key step in determining the fusion genesis (Huotari and Helenius, 2011). Membrane-bound vesic- capacity of a transport carrier with its target is the incorporation ular or tubular transport carriers bud from donor organelles and of the R-SNARE at the time of transport carrier formation. are transported to the appropriate target organelle, to which However, our understanding of the mechanisms by which they then dock and fuse to deliver their contents (Bonifacino and R-SNAREs are sorted into transport carriers is incomplete. Glick, 2004). Docking and fusion are primarily mediated by Lysosome-related organelles are specialized, tissue-specific specific interactions between SNARE proteins on the membrane structures that derive from the endolysosomal network. carrier and the target membrane (Jahn and Scheller, 2006; Yoon Lysosome-related organelle biogenesis and maturation via and Munson, 2018). Typically, a vesicular SNARE (or R-SNARE, membrane transport are well studied for melanosomes, organ- defined by the central R residue in the SNARE helix) on the elles within pigment cells of the skin, hair, and eyes that syn- vesicle membrane engages a three-helix target SNARE complex thesize and store melanin pigments (Bowman et al., 2019; (or Qa, Qb, and Qc helices, defined by the central Q residue in the Sitaram and Marks, 2012). Melanosome precursors segregate SNARE helix) on the target membrane to form a stable four- from early endosomes (Raposo et al., 2001) and then mature in a helix bundle “trans”-SNARE complex that drives fusion (Jahn process that requires delivery of melanogenic enzymes and and Scheller, 2006), often promoted by Sec1-Munc18 family transporters by at least three distinct membrane transport members and other regulators (Baker and Hughson, 2016; Rizo pathways, one from the Golgi and two from distinct domains of ............................................................................................................................................................................. 1Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA; 2Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA; 3Department of Physiology, University of Pennsylvania, Philadelphia, PA; 4Department of Biology, Linfield University, McMinnville, OR; 5Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA; 6Department of Biology, University of Pennsylvania, Philadelphia, PA; 7Department of Human Science, Georgetown University, Washington, DC; 8Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, UK; 9Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique Unite´ Mixte de Recherche 144, Compartiments de Structure et de Membrane, Paris, France; 10Cambridge Institute for Medical Research, Cambridge, UK; 11Department of Biology, Marist College, Poughkeepsie, NY. Correspondence to Michael S. Marks: [email protected]; A. Sitaram’s present address is Biology Department, Stonehill College, North Easton, MA. © 2021 Bowman et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). Rockefeller University Press https://doi.org/10.1083/jcb.202005173 1of20 J. Cell Biol. 2021 Vol. 220 No. 7 e202005173 early endosomes (Bowman et al., 2019; Sitaram and Marks, Q-SNAREs that interact with VAMP7 is syntaxin 12/13 (STX13; 2012). The endosome-derived pathways are regulated by the Chung et al., 2013; Kuster et al., 2015), a Qa SNARE that is protein complexes adaptor protein-3 (AP-3) and biogenesis of present on BLOC-1–dependent transport carriers but is not itself lysosome-related organelles complex (BLOC)-1, -2, and -3, sub- incorporated into melanosomes (Delevoye et al., 2016; Dennis units of which are mutated in heritable disorders called the et al., 2016; Dennis et al., 2015) and thus is not likely a part of Hermansky-Pudlak syndromes (HPS; Bowman et al., 2019; Di the fusogenic complex for cargo delivery. STX13 binds in vitro to Pietro and Dell’Angelica, 2005). One function of AP-3 is to sort the pallidin (Pldn; also known as BLOC1S6) subunit of BLOC-1 the enzyme tyrosinase (TYR) from early endosomes into via its SNARE domain (Ghiani et al., 2010; Huang et al., 1999; clathrin-coated vesicles destined for maturing melanosomes Moriyama and Bonifacino, 2002), suggesting a potential direct (Huizing et al., 2001; Theos et al., 2005). BLOC-1, in collaboration mechanism for sorting STX13 into BLOC-1–dependent tubules. If with actin nucleators and the microtubule motor, KIF13A, is re- this were true, then VAMP7 could be sorted into these tubules by quired to generate tubular membrane transport carriers that association with STX13. Downloaded from http://rupress.org/jcb/article-pdf/220/7/e202005173/1413924/jcb_202005173.pdf by St George's, University Of London user on 26 May 2021 emerge from vacuolar early endosomes, have features of re- Here, we tested both models for VAMP7 sorting into BLOC-1– cycling endosomes, and transiently fuse with melanosomes to dependent transport carriers in melanocytes by exploiting cell deliver essential melanosome cargoes such as TYR-related pro- lines lacking AP-3δ, the BLOC-1 Pldn subunit, or both and re- tein 1 (TYRP1; Delevoye et al., 2016; Delevoye et al., 2009; Dennis constituting these cells with variants of AP-3δ and/or Pldn that et al., 2016; Dennis et al., 2015; Setty et al., 2008; Setty et al., do or do not bind their target SNAREs. We show that binding of 2007). BLOC-2 helps target the tubular transport carriers to either AP-3 to VAMP7 or BLOC-1 to STX13 is both necessary and maturing melanosomes (Dennis et al., 2015). Fusion of these sufficient to support VAMP7 sorting and melanogenesis, doc- carriers and subsequent cargo delivery to melanosomes requires umenting an example of redundancy in a SNARE sorting step. the R-SNARE, vesicle-associated membrane protein 7 (VAMP7; This mechanism of SNARE sorting and regulation provides in- also known as tetanus neurotoxin insensitive VAMP, or TI- sight into how SNAREs that localize broadly within the endo- VAMP; Dennis et al., 2016; Tamura et al., 2011). VAMP7 is lysosomal system can maintain specificity in fusion reactions, subsequently recycled from melanosomes in distinct tubular and how recognition by multiple molecular components can carriers (Dennis et al., 2016; Ripoll et al., 2018). Sorting of VAMP7 ensure the sorting of an essential SNARE component. into melanosome-derived tubules likely requires binding to the scaffolding protein VAMP7- and Rab32/38-interacting protein (VARP; Dennis et al., 2016; Schafer¨ et al., 2012; Tamura et al., Results 2009), but how VAMP7 is sorted from endosomes into The BLOC-1–dependent cargo TYRP1 is partially missorted in melanosome-bound tubular carriers is unknown. AP-3–deficient melanocytes VAMP7 is one of several R-SNAREs that possess a longin In AP-3–deficient melanocytes from AP3B1−/− HPS type 2 pa- domain (Daste et al., 2015), which folds back onto the SNARE tients or Ap3b1−/− pearl mice, the BLOC-1–independent cargo TYR domain to impede SNARE complex formation (Kent et al., 2012; is largely depleted from melanosomes (Huizing et al., 2001; Martinez-Arca et al., 2003; Schafer¨ et al.,
Recommended publications
  • Heřmanský–Pudlák Syndrome: a Case Report
    Int J Case Rep Images 2018;9:100886Z01SB2018. Basu et al. 1 www.ijcasereportsandimages.com CASE REPORT PEER REVIEWED | OPEN ACCESS Heřmanský–Pudlák syndrome: A case report Sonali Someek Basu, Pranav Kumar ABSTRACT care, rehabilitation and multidisciplinary team approach. Heřmanský–Pudlák syndrome (HPS) is hereditary multi system, a rare autosomal Keywords: Gene and data base, Heřmanský– recessive disorder with heterogeneous Pudlák syndrome, Multiple skin cancer, Oculocu- locus characterized by tyrosine positive taneous albinism, Pulmonary fibrosis oculocutaneous albinism, congenital nystagmus, platelet storage pool deficiency - How to cite this article hemorrhagic bleeding tendency and systemic manifestations due to lysosomal accumulation Basu SS, Kumar P. Heřmanský–Pudlák of ceroid lipofuscin in different organs includes syndrome: A case report. Int J Case Rep Images pulmonary fibrosis and granulomatous 2018;9:100886Z01SB2018. enteropathy colitis and renal failure. Depending upon the organ system symptoms and signs, the presentation of HPS can be varied and diagnosis Article ID: 100886Z01SB2018 can be challenging. The most frequently used criteria for diagnosis of HPS as per National Organization of Rare Disease (NORD) revised ********* 2015 are albinism and prolong bleeding. doi: 10.5348/100886Z01SB2018CR Symptoms due to ceroid lipofuscin deposition in lungs, colon, heart and kidneys can occur. Differentiating this condition from other diseases that cause oculocutaneous albinism INTRODUCTION such as ocular albinism, Griscelli syndrome and Chédiak–Higashi syndrome by presence of Heřmanský–Pudlák syndrome (HPS), a rare neurological symptoms and frequent bacterial hereditary disease caused by autosomal recessive infections due to immunodeficiency and analysis inheritance, was first described by Hermansky and of peripheral blood smear with prolong bleeding Pudlakin 1959 [1].
    [Show full text]
  • A Gene for Freckles Maps to Chromosome 4Q32–Q34
    A Gene for Freckles Maps to Chromosome 4q32–q34 Xue-Jun Zhang,Ãz1 Ping-Ping He,Ãwz Yan-Hua Liang,Ãwz Sen Yang,Ãz Wen-Tao Yuan,w Shi-Jie Xu,w and Wei Huangw1 ÃInstitute of Dermatology & Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China, wChinese National Human Genome Center at Shanghai, Shanghai, China, zKey Laboratory of Genome Research at Anhui, Hefei, China Freckles are numerous pigmented macules on the face commonly occurring in the Caucasian and Chinese population. As freckling is considered as an independent trait, no gene or locus for it has been identified to date. Here we performed genome-wide scan for linkage analysis in a multigeneration Chinese family with freckles. A maximum LOD score of 4.26 at a recombination fraction of 0 has been obtained with marker D4S1566. Haplotype analysis localized the freckles locus to a 16 Mbp region flanked by D4S2952 and D4S1607. We have thus mapped the gene for freckles to chromosome 4q32–q34. This will aid future identification of the responsible gene, which will be very useful for the understanding of the molecular mechanism of freckles. Key words: freckles/gene mapping/genome-wide scan/linkage analysis. J Invest Dermatol 122:286 –290, 2004 Freckles, or ephelides are numerous pigmented spots of the tion study with the melanocorin-1-receptor (MC1R) gene, skin commonly occurring in the Caucasian population freckles, and solar lentigines, and found that the MC1R (Bastiaens et al, 1999). They are mainly confined to the gene variants could play an important part in the develop- face, even arms and back.
    [Show full text]
  • Supplementary Table 1 Final.Xlsx
    Platelet Biology & Its Disorders SUPPLEMENTARY APPENDIX Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects Ben Johnson, 1 Gillian C. Lowe, 1 Jane Futterer, 1 Marie Lordkipanidzé, 1 David MacDonald, 1 Michael A. Simpson, 2 Isabel Sanchez-Guiú, 3 Sian Drake, 1 Danai Bem, 1 Vincenzo Leo, 4 Sarah J. Fletcher, 1 Ban Dawood, 1 José Rivera, 3 David Allsup, 5 Tina Biss, 6 Paula HB Bolton-Maggs, 7 Peter Collins, 8 Nicola Curry, 9 Charlotte Grimley, 10 Beki James, 11 Mike Makris, 4 Jayashree Motwani, 12 Sue Pavord, 13 Katherine Talks, 6 Jecko Thachil, 7 Jonathan Wilde, 14 Mike Williams, 12 Paul Harrison, 15 Paul Gis - sen, 16 Stuart Mundell, 17 Andrew Mumford, 18 Martina E. Daly, 4 Steve P. Watson, 1 and Neil V. Morgan 1 on behalf of the UK GAPP Study Group 1Institute for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK; 2Division of Genetics and Molecular Medicine, King's College, London, UK; 3Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Mur - cia, Spain; 4Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, University of Sheffield, UK; 5Hull Haemophilia Treatment Centre, Hull and East Yorkshire Hospitals NHS Trust, Castle Hill Hospital, Hull, UK; 6Depart - ment of Haematology, Royal Victoria Infirmary, Newcastle Upon Tyne, UK; 7Department of Haematology, Manchester Royal Infirmary, Manchester, UK; 8Arthur Bloom Haemophilia Centre, School of Medicine, Cardiff
    [Show full text]
  • Development of the Swimbladder Surfactant System and Biogenesis of Lysosome-Related Organelles Is Regulated by BLOS1 in Zebrafish
    | INVESTIGATION Development of the Swimbladder Surfactant System and Biogenesis of Lysosome-Related Organelles Is Regulated by BLOS1 in Zebrafish Tianbing Chen,*,† Guili Song,* Huihui Yang,*,† Lin Mao,*,† Zongbin Cui,*,1 and Kaiyao Huang*,1 *Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China and †University of Chinese Academy of Sciences, Beijing 100049, China ABSTRACT Hermansky-Pudlak syndrome (HPS) is a human autosomal recessive disorder that is characterized by oculocutaneous albinism and a deficiency of the platelet storage pool resulting from defective biogenesis of lysosome-related organelles (LROs). To date, 10 HPS genes have been identified, three of which belong to the octamer complex BLOC-1 (biogenesis of lysosome-related organelles complex 1). One subunit of the BLOC-1 complex, BLOS1, also participates in the BLOC-1-related complex (BORC). Due to lethality at the early embryo stage in BLOS1 knockout mice, the function of BLOS1 in the above two complexes and whether it has a novel function are unclear. Here, we generated three zebrafish mutant lines with a BLOC-1 deficiency, in which melanin and silver pigment formation was attenuated as a result of mutation of bloc1s1, bloc1s2, and dtnbp1a, suggesting that they function in the same complex. In addition, mutations of bloc1s1 and bloc1s2 caused an accumulation of clusters of lysosomal vesicles at the posterior part of the tectum, representing a BORC-specific function in zebrafish. Moreover, bloc1s1 is highly expressed in the swimbladder during postembryonic stages and is required for positively regulating the expression of the genes, which is known to govern surfactant production and lung development in mammals.
    [Show full text]
  • MUTED Antibody - C-Terminal Region (ARP63301 P050) Data Sheet
    MUTED antibody - C-terminal region (ARP63301_P050) Data Sheet Product Number ARP63301_P050 Product Name MUTED antibody - C-terminal region (ARP63301_P050) Size 50ug Gene Symbol BLOC1S5 Alias Symbols DKFZp686E2287; MU; MUTED Nucleotide Accession# NM_201280 Protein Size (# AA) 187 amino acids Molecular Weight 21kDa Product Format Lyophilized powder NCBI Gene Id 63915 Host Rabbit Clonality Polyclonal Official Gene Full Name Muted homolog (mouse) Gene Family BLOC1S This is a rabbit polyclonal antibody against MUTED. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Partner Proteins BLOC1S2,DTNBP1,BLOC1S1,BLOC1S2,CNO,DTNBP1,SNAPIN,BLOC1S2,BLOC1S3,DTNBP1,PLDN,SQS TM1,YOD1 This gene encodes a component of BLOC-1 (biogenesis of lysosome-related organelles complex 1). Components of this complex are involved in the biogenesis of organelles such as melanosomes and platelet- Description of Target dense granules. A mouse model for Hermansky-Pudlak Syndrome is mutated in the murine version of this gene. Alternative splicing results in multiple transcript variants. Read-through transcription exists between this gene and the upstream EEF1E1 (eukaryotic translation elongation factor 1 epsilon 1) gene, as well as with the downstream TXNDC5 (thioredoxin domain containing 5) gene.
    [Show full text]
  • Product Information
    Product information PLDN, 1-172aa Human, His-tagged, Recombinant, E.coli Cat. No. IBATGP1472 Full name: pallidin NCBI Accession No.: NP_036520 Synonyms: HPS9, PA, PALLID Description: PLDN (Pallidin) may play a role in intracellular vesicle trafficking. It interacts with Syntaxin 13 which mediates intracellular membrane fusion. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined. This protein involved in the development of lysosome-related organelles, such as melanosomes and platelet-dense granules. PLDN has been shown to interact with BLOC1S1, STX12, Dysbindin, CNO, BLOC1S2, MUTED and SNAPAP. Recombinant human PLDN protein, fused to His-tag at N-terminus, was expressed in E.coli and purified by using conventional chromatography techniques. Form: Liquid. In 20mM Tris-HCl buffer (pH 8.0) containing 2mM DTT, 10% glycerol, 100mM NaCl Molecular Weight: 21.9kDa (192aa), confirmed by MALDI-TOF (Molecular weight on SDS-PAGE will appear higher) Purity: > 90% by SDS - PAGE Concentration: 1mg/ml (determined by Bradford assay) 15% SDS-PAGE (3ug) Sequences of amino acids: MGSSHHHHHH SSGLVPRGSH MSVPGPSSPD GALTRPPYCL EAGEPTPGLS DTSPDEGLIE DLTIEDKAVE QLAEGLLSHY LPDLQRSKQA LQELTQNQVV LLDTLEQEIS KFKECHSMLD INALFAEAKH YHAKLVNIRK EMLMLHEKTS KLKKRALKLQ QKRQKEELER EQQREKEFER EKQLTARPAK RM General references: Huang L, et al. (1999). Nat Genet 23 (3): 329–32. Moriyama K., et al. (2002) Traffic 3:666-677 Storage: Can be stored at +4°C short term (1-2 weeks). For long term storage, aliquot and store at -20°C or -70°C. Avoid repeated freezing and thawing cycles. For research use only. This product is not intended or approved for human, diagnostics or veterinary use.
    [Show full text]
  • E-Mutpath: Computational Modelling Reveals the Functional Landscape of Genetic Mutations Rewiring Interactome Networks
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.262386; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. e-MutPath: Computational modelling reveals the functional landscape of genetic mutations rewiring interactome networks Yongsheng Li1, Daniel J. McGrail1, Brandon Burgman2,3, S. Stephen Yi2,3,4,5 and Nidhi Sahni1,6,7,8,* 1Department oF Systems Biology, The University oF Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2Department oF Oncology, Livestrong Cancer Institutes, Dell Medical School, The University oF Texas at Austin, Austin, TX 78712, USA 3Institute For Cellular and Molecular Biology (ICMB), The University oF Texas at Austin, Austin, TX 78712, USA 4Institute For Computational Engineering and Sciences (ICES), The University oF Texas at Austin, Austin, TX 78712, USA 5Department oF Biomedical Engineering, Cockrell School of Engineering, The University oF Texas at Austin, Austin, TX 78712, USA 6Department oF Epigenetics and Molecular Carcinogenesis, The University oF Texas MD Anderson Science Park, Smithville, TX 78957, USA 7Department oF BioinFormatics and Computational Biology, The University oF Texas MD Anderson Cancer Center, Houston, TX 77030, USA 8Program in Quantitative and Computational Biosciences (QCB), Baylor College oF Medicine, Houston, TX 77030, USA *To whom correspondence should be addressed. Nidhi Sahni. Tel: +1 512 2379506; Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.262386; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Gene Expression in the Mouse Eye: an Online Resource for Genetics Using 103 Strains of Mice
    Molecular Vision 2009; 15:1730-1763 <http://www.molvis.org/molvis/v15/a185> © 2009 Molecular Vision Received 3 September 2008 | Accepted 25 August 2009 | Published 31 August 2009 Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice Eldon E. Geisert,1 Lu Lu,2 Natalie E. Freeman-Anderson,1 Justin P. Templeton,1 Mohamed Nassr,1 Xusheng Wang,2 Weikuan Gu,3 Yan Jiao,3 Robert W. Williams2 (First two authors contributed equally to this work) 1Department of Ophthalmology and Center for Vision Research, Memphis, TN; 2Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, Memphis, TN; 3Department of Orthopedics, University of Tennessee Health Science Center, Memphis, TN Purpose: Individual differences in patterns of gene expression account for much of the diversity of ocular phenotypes and variation in disease risk. We examined the causes of expression differences, and in their linkage to sequence variants, functional differences, and ocular pathophysiology. Methods: mRNAs from young adult eyes were hybridized to oligomer microarrays (Affymetrix M430v2). Data were embedded in GeneNetwork with millions of single nucleotide polymorphisms, custom array annotation, and information on complementary cellular, functional, and behavioral traits. The data include male and female samples from 28 common strains, 68 BXD recombinant inbred lines, as well as several mutants and knockouts. Results: We provide a fully integrated resource to map, graph, analyze, and test causes and correlations of differences in gene expression in the eye. Covariance in mRNA expression can be used to infer gene function, extract signatures for different cells or tissues, to define molecular networks, and to map quantitative trait loci that produce expression differences.
    [Show full text]
  • BLOS2 Negatively Regulates Notch Signaling During Neural and Hematopoietic Stem And
    1 BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and 2 progenitor cell development 3 4 Wenwen Zhou 1, 6 #, Qiuping He 2, 6 #, Chunxia Zhang 2, 6, Xin He 1, Zongbin Cui 3, 5 Feng Liu 2, 6 *, and Wei Li 1, 4, 5 * 6 7 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and 8 Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 9 2 State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of 10 Sciences, Beijing 100101, China 11 3 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, 12 Chinese Academy of Sciences, Wuhan 430072, China 13 4 Center for Medical Genetics, Beijing Children’s Hospital, Capital Medical University; 14 Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children, 15 Beijing 100045, China; 16 5 Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China; 17 6 University of Chinese Academy of Sciences, Beijing 100039, China. 18 19 # Co-first authors. 20 * Correspondence should be addressed to: 21 Wei Li, Ph.D., Beijing Children’s Hospital, Capital Medical University, 56 Nan-Li-Shi Road, 1 22 Xicheng District, Beijing 100045, China. Tel: +86-10-5961-6628; Fax: +86-5971-8699; 23 e-mail: [email protected]; 24 Feng Liu, Ph.D., State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese 25 Academy of Sciences, Beijing 100101, China. Tel.: +86 (10) 64807307; Fax: +86 (10) 26 64807313; Email: [email protected]. 27 28 Running Title: BLOS2 negatively regulates Notch signaling 29 30 Key Words: BLOS2; Notch; stem and progenitor cell development; neurogenesis; 31 hematopoiesis; endo-lysosomal trafficking 32 33 The authors declare that no competing interests exist.
    [Show full text]
  • Downregulation of Carnitine Acyl-Carnitine Translocase by Mirnas
    Page 1 of 288 Diabetes 1 Downregulation of Carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion Mufaddal S. Soni1, Mary E. Rabaglia1, Sushant Bhatnagar1, Jin Shang2, Olga Ilkayeva3, Randall Mynatt4, Yun-Ping Zhou2, Eric E. Schadt6, Nancy A.Thornberry2, Deborah M. Muoio5, Mark P. Keller1 and Alan D. Attie1 From the 1Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; 2Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, New Jersey; 3Sarah W. Stedman Nutrition and Metabolism Center, Duke Institute of Molecular Physiology, 5Departments of Medicine and Pharmacology and Cancer Biology, Durham, North Carolina. 4Pennington Biomedical Research Center, Louisiana State University system, Baton Rouge, Louisiana; 6Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York. Corresponding author Alan D. Attie, 543A Biochemistry Addition, 433 Babcock Drive, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, (608) 262-1372 (Ph), (608) 263-9608 (fax), [email protected]. Running Title: Fatty acyl-carnitines enhance insulin secretion Abstract word count: 163 Main text Word count: 3960 Number of tables: 0 Number of figures: 5 Diabetes Publish Ahead of Print, published online June 26, 2014 Diabetes Page 2 of 288 2 ABSTRACT We previously demonstrated that micro-RNAs 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of micro-RNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including non-fuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT, Slc25a20) is a direct target of these miRNAs.
    [Show full text]
  • Human BLOC1S2 / BLOS2 Protein (GST Tag)
    Human BLOC1S2 / BLOS2 Protein (GST Tag) Catalog Number: 13916-H09E General Information SDS-PAGE: Gene Name Synonym: BLOS2; CEAP; CEAP11 Protein Construction: A DNA sequence encoding the human BLOC1S2 (Q6QNY1-2) (Met1- Arg99) was fused with the GST tag at the N-terminus. Source: Human Expression Host: E. coli QC Testing Purity: > 74 % as determined by SDS-PAGE Endotoxin: Protein Description Please contact us for more information. BLOC1S2, also known as BLOS2, belongs to the BLOC1S2 family. It is a Stability: component of BLOC-1 complex. The BLOC-1 complex is composed of BLOC1S1, BLOC1S2, BLOC1S3, DTNBP1, MUTED, PLDN, Samples are stable for up to twelve months from date of receipt at -70 ℃ CNO/cappuccino and SNAPIN. The BLOC-1 complex is required for normal biogenesis of lysosome-related organelles, such as platelet dense Predicted N terminal: Met granules and melanosomes. BLOC1S2 interacts directly with BLOC1S1, Molecular Mass: BLOC1S3, MUTED, CNO/cappuccino and SNAPIN. It may play a role in cell proliferation. It also plays a role in intracellular vesicle trafficking. The recombinant human BLOC1S2 /GST chimera consists of 333 amino Functionally, BLOC1S2 gene has been proposed to participate in acids and has a predicted molecular mass of 38.7 kDa. It migrates as an processes (melanosome organization, microtubule nucleation, platelet approximately 39 KDa band in SDS-PAGE under reducing conditions. dense granule organization, positive regulation of cell proliferation, positive regulation of transcription, regulation of apoptosis, positive regulation of Formulation: transcription from RNA polymerase II promoter). Lyophilized from sterile PBS, pH 7.4 References Normally 5 % - 8 % trehalose, mannitol and 0.01% Tween80 are added as 1.Sowa ME, et al.
    [Show full text]
  • Melanosome Morphologies in Murine Models of Hermansky–Pudlak
    PRIORITY PUBLICATION Melanosome Morphologies in Murine Models of Hermansky^Pudlak Syndrome Re£ect Blocks in Organelle Development Thuyen Nguyen, Edward K. Novak,w Maryam Kermani, Joachim Fluhr, Luanne L. Peters,n Richard T. Swank,w and Maria L. Wei Department of Dermatology,Veterans A¡airs Medical Center, University of California, San Francisco, CA, U.S.A.; nJackson Laboratory, Bar Harbor, ME and wDepartment of Molecular and Cellular Biology, Roswell Park Cancer Center, Bu¡alo, NY, U.S.A. Hermansky^Pudlak syndrome is an autosomal recessive fer. The Hermansky^Pudlak syndrome strains are disease characterized by pigment dilution and pro- classi¢ed into morphologic groups characterized by longed bleeding time. At least 15 mutant mouse strains the step at which melanosome biogenesis or transfer to have been classi¢ed as models of Hermansky^Pudlak keratinocytes is inhibited, with the cappuccino strain syndrome. Some of the genes are implicated in intracel- observed to be blocked at the earliest step and gunmetal lular vesicle tra⁄cking: budding, targeting, and secre- blocked at the latest step. We show that all Hermansky^ tion. Many of the Hermansky^Pudlak syndrome genes Pudlak syndrome mutant strains except gunmetal have remain uncharacterized and their functions are un- an increase in unpigmented or hypopigmented imma- known. Clues to the functions of these genes can be ture melanosomal forms, leading to the hypopigmen- found by analyzing the physiologic and cellular pheno- ted coat colors seen in these strains. In contrast, the types. Here we have examined the morphology of the hypopigmentation seen in the gunmetal strain is due melanosomes in the skin of 10 of the mutant mouse to the retention of melanosomes in melanocytes, and Hermansky^Pudlak syndrome strains by transmission ine⁄cient transfer into keratinocytes.
    [Show full text]