Towards Efficient Heap Overflow Discovery Xiangkun Jia, TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; Chao Zhang, Institute for Network Science and Cyberspace, Tsinghua University; Purui Su, Yi Yang, Huafeng Huang, and Dengguo Feng, TCA/SKLCS, Institute of Software, Chinese Academy of Sciences https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jia This paper is included in the Proceedings of the 26th USENIX Security Symposium August 16–18, 2017 • Vancouver, BC, Canada ISBN 978-1-931971-40-9 Open access to the Proceedings of the 26th USENIX Security Symposium is sponsored by USENIX Towards Efficient Heap Overflow Discovery Xiangkun Jia1;3, Chao Zhang2 , Purui Su1;3 , Yi Yang1, Huafeng Huang1, Dengguo Feng1 1TCA/SKLCS, Institute of Software, Chinese Academy of Sciences 2Institute for Network Science and Cyberspace 3University of Chinese Academy of Sciences Tsinghua University {jiaxiangkun, yangyi, huanghuafeng, feng}@tca.iscas.ac.cn
[email protected] [email protected] Abstract to attack. As the heap layout is not deterministic, heap Heap overflow is a prevalent memory corruption vulner- overflow vulnerabilities are in general harder to exploit ability, playing an important role in recent attacks. Find- than stack corruption vulnerabilities. But attackers could ing such vulnerabilities in applications is thus critical for utilize techniques like heap spray [16] and heap feng- security. Many state-of-art solutions focus on runtime shui [43] to arrange the heap layout and reliably launch detection, requiring abundant inputs to explore program attacks, making heap overflow a realistic threat. paths in order to reach a high code coverage and luckily Several solutions are proposed to protect heap overflow trigger security violations.