Review Article Argininosuccinate Synthase: at the Center of Arginine Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Argininosuccinate Synthase: at the Center of Arginine Metabolism Int J Biochem Mol Biol 2011;2(1):8-23 www.ijbmb.org /ISSN:2152-4114/IJBMB1090003 Review Article Argininosuccinate synthase: at the center of arginine metabolism Ricci J. Haines, Laura C. Pendleton, Duane C. Eichler Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd., MDC Box 7, Tampa, Florida 33612, USA. Received September 28, 2010; accepted October 3, 2010; Epub October 8, 2010; Published February 15, 2011 Abstract: The levels of L-arginine, a cationic, semi-essential amino acid, are often controlled within a cell at the level of local availability through biosynthesis. The importance of this temporal and spatial control of cellular L-arginine is highlighted by the tissue specific roles of argininosuccinate synthase (argininosuccinate synthetase) (EC 6.3.4.5), as the rate-limiting step in the conversion of L-citrulline to L-arginine. Since its discovery, the function of argininosucci- nate synthase has been linked almost exclusively to hepatic urea production despite the fact that alternative path- ways involving argininosuccinate synthase were defined, such as its role in providing arginine for creatine and for polyamine biosynthesis. However, it was the discovery of nitric oxide that meaningfully extended our understanding of the metabolic importance of non-hepatic argininosuccinate synthase. Indeed, our knowledge of the number of tissues that manage distinct pools of arginine under the control of argininosuccinate synthase has expanded significantly. Keywords: Argininosuccinate synthase; arginine metabolism; nitric oxide; arginase; urea cycle, arginine recycling Introduction thase participates are linked to the varied uses of the amino acid arginine. There are five major Arginine is required by all tissues in the human pathways in which argininosuccinate synthase body for protein synthesis, and by some tissues plays a key role. These are (a) urea synthesis, for specialized needs. Any de novo biosynthetic (b) nitric oxide synthesis, (c) polyamine synthe- pathway for arginine involves the conversion of sis, (d) creatine synthesis, and (e) the de novo citrulline to arginine catalyzed by argininosucci- synthesis of arginine to maintain serum levels. nate synthase and argininosuccinate lyase. Spe- cifically, argininosuccinate synthase catalyzes In liver, where arginine is hydrolyzed to form the condensation of citrulline and aspartate to urea and ornithine, argininosuccinate synthase form argininosuccinate, the immediate precur- is highly expressed, and hormone and nutrients sor of arginine. Argininosuccinate lyase then constitute the major regulating factors [1]. In splits argininosuccinate to release fumarate contrast, for nitric oxide-producing cells where and arginine (Figure 1). First identified in liver, arginine is the direct substrate for nitric oxide as a rate-limiting enzyme in urea synthesis, ar- synthesis, argininosuccinate synthase is ex- gininosuccinate synthase is now recognized as pressed at relatively low levels, and in most a ubiquitous enzyme in mammalian tissues, and cases, its regulation has been tied to affecting not surprisingly, its expression, localization, and the phenotypic patterns controlled by nitric ox- regulation differs significantly depending on the ide signaling [2]. tissue specific needs for arginine. The subcellular localization of argininosuccinate Argininosuccinate synthase plays an important synthase also varies. For example, in endothe- role as the rate-limiting step in providing argin- lial cells argininosuccinate synthase co-localizes ine for an assortment of metabolic processes, with eNOS at caveolae [3] and outside of the both catabolic and anabolic. Thus, the meta- Golgi [4]. In kidney, subcellular localization is bolic pathways in which argininosuccinate syn- not well-defined, but seems to be cytosolic in Argininosuccinate synthase for arginine metabolism Figure 1. De Novo biosynthetic pathway for arginine. relation to synthesis of arginine for guanidi- remaining three enzymes are located in the cy- noacetate production and for the de novo syn- tosol. Argininosuccinate synthase is located on thesis of arginine for export to maintain serum the outer mitochondrial membrane [5], utilizing arginine levels. In liver, argininosuccinate syn- both citrulline and aspartate to produce argini- thase associates with the outside of the mito- nosuccinate. Argininosuccinate lyase catalyzes chondria to complete the urea cycle, which in- the cleavage of argininosuccinate to produce volves both the mitochondrial and cytosolic arginine and fumarate. Subsequently, arginase compartments [5]. splits the arginine to ornithine and urea, which ensures that the arginine generated by the ac- The objective of this discussion is to highlight tions of argininosuccinate synthase and argini- the varied metabolic processes that involve ar- nosuccinate lyase is, for the most part, directed gininosuccinate synthase, its essential role in to urea production [8] (Figure 2). Urea is ex- regulating unique cellular pools of available creted and the ornithine is transported back arginine, and the levels of control that regulate into the mitochondria to complete the cycle. its expression. Immunocytochemical studies by Cohen & Kudal Argininosuccinate synthase and the urea cycle [5] showed that argininosuccinate synthase and argininosuccinate lyase are located in the im- The urea cycle, also known as the Krebs urea mediate vicinity of the mitochondria, predomi- cycle or ornithine cycle, was first discovered in nantly next to the cytoplasmic surface of the 1932 by Hans Krebs [6]. The cycle is comprised outer membrane. This finding confirmed previ- of five enzymes and is essentially localized to ous biochemical studies [9-11] suggesting that the liver in mammals, although the kidney does these enzymes are organized in situ next to the share some capacity to produce urea. The first outer membrane of mitochondria. Perhaps our two enzymes of the urea cycle, carbamoyl phos- best understanding as to how argininosuccinate phate synthetase I and ornithine transcar- synthase associates with hepatic mitochondria bamoylase are located within the mitochondrial comes from the findings related to adult-onset matrix of periportal hepatocytes [7], while the type II citrullinemia (CTLN2). Unlike classical 9 Int J Biochem Mol Biol 2010:2(1):8-23 Argininosuccinate synthase for arginine metabolism Figure 2. Urea cycle type I citrullinemia (CTLN1) in children where ated with one another such that substrates and the deficiency of argininosuccinate synthase products can be shuttled from one enzyme to results from a mutation in the gene [12], in another by channeling [11]. Support for chan- CTLN2 there is no mutation in the argininosucci- neling comes from studies demonstrating the nate synthase gene, yet there is still a marked channeling of the extramitochondrial ornithine deficiency in liver argininosuccinate synthase to the mitochondrial ornithine transcarbamoy- protein [13]. To account for the liver specific lase via its transporter [15], from studies show- deficiency of argininosuccinate synthase in ing the co-localization of carbamoyl phosphate CTLN2, Saheki et al. [13] showed association of synthetase I and ornithine transcarbamoylase CTLN2 with a defect in SLC25A13 gene that with the inner mitochondrial membrane [16], encodes the mitochondrial Ca2+-dependent as- from labeling studies demonstrating channeling partate/glutamate transporter known as citrin of citrulline from ornithine transcarbamoylase in [14]. Saheki’s findings suggested that citrin the mitochondria to argininosuccinate synthase forms a complex with the three “soluble” cyto- in the cytoplasm, and from studies demonstrat- plasmic enzymes of the urea cycle, including ing channeling of arginine between argininosuc- argininosuccinate synthase. This interaction cinate lyase and arginase [10]. with citrin may be direct or mediated through some other protein or proteins. Nevertheless, Thus the spatial relationship of argininosucci- the loss of spatial control attributable to the nate synthase relative to ornithine transcar- mutated citrin strongly correlated with reduction bamoylase in the mitochondria, and arginino- of liver argininosuccinate synthase protein in succinate lyase in the cytosol, together with the CTLN2, possibly through destabilization and/or relatively high expression levels for each of degradation [13]. these enzymes, ensures that both substrate and product, and in particular arginine, do not Urea cycle enzymes appear to be closely associ- readily exchange with other cellular pools, or 10 Int J Biochem Mol Biol 2010:2(1):8-23 Argininosuccinate synthase for arginine metabolism Figure 3. Citrulline-nitric oxide cycle even with extracellular sources. Moreover, it is not surprising that expression of arginino- hepatocytes do not easily exchange arginine succinate synthase, relative to urea cycle func- with serum, evidenced by their limited capacity tion, is highly regulated and governed by to take up arginine [17]. As a result, any other changes in dietary protein intake, and by hor- intracellular pool of arginine, as well as serum mones such as glucagon, insulin, and glucocor- arginine, is protected [18, 19]. ticoids [1]. There are also studies in cultured hepatocytes demonstrating nutrient control over The significance of this arrangement can be argininosuccinate synthase expression where illustrated by the grave outcomes observed dur- the addition of arginine was suppressive and ing liver failure,
Recommended publications
  • Argininosuccinate Lyase Deficiency
    ©American College of Medical Genetics and Genomics GENETEST REVIEW Argininosuccinate lyase deficiency Sandesh C.S. Nagamani, MD1, Ayelet Erez, MD, PhD1 and Brendan Lee, MD, PhD1,2 The urea cycle consists of six consecutive enzymatic reactions that citrulline together with elevated argininosuccinic acid in the plasma convert waste nitrogen into urea. Deficiencies of any of these enzymes or urine. Molecular genetic testing of ASL and assay of ASL enzyme of the cycle result in urea cycle disorders (UCDs), a group of inborn activity are helpful when the biochemical findings are equivocal. errors of hepatic metabolism that often result in life-threatening However, there is no correlation between the genotype or enzyme hyperammonemia. Argininosuccinate lyase (ASL) catalyzes the activity and clinical outcome. Treatment of acute metabolic decom- fourth reaction in this cycle, resulting in the breakdown of arginino- pensations with hyperammonemia involves discontinuing oral pro- succinic acid to arginine and fumarate. ASL deficiency (ASLD) is the tein intake, supplementing oral intake with intravenous lipids and/ second most common UCD, with a prevalence of ~1 in 70,000 live or glucose, and use of intravenous arginine and nitrogen-scavenging births. ASLD can manifest as either a severe neonatal-onset form therapy. Dietary restriction of protein and dietary supplementation with hyperammonemia within the first few days after birth or as a with arginine are the mainstays in long-term management. Ortho- late-onset form with episodic hyperammonemia and/or long-term topic liver transplantation (OLT) is best considered only in patients complications that include liver dysfunction, neurocognitive deficits, with recurrent hyperammonemia or metabolic decompensations and hypertension.
    [Show full text]
  • Hyperammonemia: Regulation of Argininosuccinate Synthetase and Argininosuccinate Lyase Genes in Aggregating Cell Cultures of Fetal Rat Brain
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Serveur académique lausannois Neuroscience Letters (1999) 266: 89-92 Hyperammonemia: Regulation of Argininosuccinate Synthetase and Argininosuccinate Lyase Genes in Aggregating Cell Cultures of Fetal Rat Brain. Olivier Braissant1, Paul Honegger2, Marc Loup1, Katsuro Iwase3*, Masaki Takiguchi3* and Claude Bachmann1. 1 Central Clinical Chemistry Laboratory, University Hospital, CH-1011 Lausanne, Switzerland. 2 Physiology Institute, University of Lausanne, CH-1011 Lausanne, Switzerland. 3 Department of Molecular Genetics, Kumamoto University School of Medicine, Kumamoto 862-0976, Japan. * Present address: Department of Biochemistry, Chiba University School of Medicine, Chiba 260-8670, Japan Keywords: brain, argininosuccinate, arginine, citrulline-NO cycle, astrocyte, hyperammonemia Correspondence to : Olivier Braissant Central Clinical Chemistry Laboratory, University Hospital, CH-1011 Lausanne, Switzerland Tél : (+41.21) 314.41.52 Fax : (+41.21) 314.42.88 e-mail : [email protected] 1 Abstract Hyperammonemia in the brain leads to poorly understood alterations of nitric oxide (NO) synthesis. Arginine, the substrate of nitric oxide synthases, might be recycled from the citrulline produced with NO by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL). The regulation of AS and AL genes during hyperammonemia is unknown in the brain. We used brain cell aggregates cultured from dissociated telencephalic cortex of rat embryos to analyse the regulation of AS and AL genes in hyperammonemia. Using RNase protection assay and non-radioactive in situ hybridization on aggregate cryosections, we show that both AS and AL genes are induced in astrocytes but not in neurons of aggregates exposed to 5 mM NH4Cl.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • The Mechanism of Enzyme-Catalyzed Ergothioneine Degradation
    The Mechanism of Enzyme-catalyzed Ergothioneine Degradation Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Alice Maurer aus Deutschland Basel, 2020 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Florian Seebeck Prof. Dr. Michael Müller Basel, den 15.09.2020 Prof. Dr. Martin Spiess Dekan der Philosophisch-Naturwissenschaftlichen Fakultät Abstract The sulfur containing histidine derivative ergothioneine is a ubiquitous natural product. Research on its biosynthesis and degradation can elucidate the complex biological and molecular function of this small molecular weight compound. The biosynthesis of ergothioneine is well established, yet little is known about its degradation. The first step of ergothioneine degradation is catalyzed by the enzyme ergothionase, which will be the focus of this thesis. Ergothionase catalyzes the 1,2-elimination of trimethylamine from ergothioneine to yield thiourocanic acid. In this work, kinetic and structural investigations elucidate the mechanism of ergothionase. Based on the identification of catalytic residues, we are able to portray ergothionase producing organisms and found that they are mainly gut bacteria. This finding is in particular interesting because ergothioneine as food-additive is generally regarded as safe, whereas the ergothionase-mediated degrading of ergothioneine yields to trimethylamine, which is toxic. Furthermore, we characterized two unknown lyases. One of these new lyases employs a similar mechanism as ergothionase but uses an oxidized substrate derivative. Whereas, the other new lyase catalyzes the elimination of trimethylamine from trimethylhistidine (TMH) and has distinctive differences in the active site compared to ergothionase.
    [Show full text]
  • Nitro Analogs of Substrates for Argininosuccinate Synthetase and Argininosuccinate Lyase’
    ARCHIVESOF BIOCHEMISTRY AND BIOPHYSICS Vol. 232, No. 2, August 1, pp. 520-525, 1984 Nitro Analogs of Substrates for Argininosuccinate Synthetase and Argininosuccinate Lyase’ FRANK M. RAUSHEL Lkpartment of Chemistry, Team A&M University, College Station, Texas ?‘z?@ Received December 27, 1933, and in revised form March 20, 1982 The nitro analogs of aspartate and argininosuccinate were synthesized and tested as substrates and inhibitors of argininosuccinate synthetase and argininosuccinate lyase, respectively. The V,,,,, for 3-nitro-2-aminopropionic acid was found to be 60% of the maximal rate of aspartate utilization in the reaction catalyzed by argininosuccinate synthetase. Only the nitronate form of this substrate, in which the C-3 hydrogen is ionized, was substrate active, indicating a requirement for a negatively charged group at the /3 carbon. The V/K of the nitro analog of aspartate was 85% of the value of aspartate after correcting for the percentage of the active nitronate species. The nitro analog of argininosuccinate, N3-(L-1-carboxy-2-nitroethyl)-L-arginine, was a strong competitive inhibitor of argininosuccinate lyase but was not a substrate. The pH de- pendence of the observed pKi was consistent with the ionized carbon acid (pK = 8.2) in the nitronate configuration as the inhibitory material. The pH-independent pK+ of 2.7 PM is 20 times smaller than the Km of argininosuccinate at pH 7.5. These results suggest that the tighter binding of the nitro analog relative to the substrate is due to the similarity in structure to a carbanionic intermediate in the reaction pathway. It has recently been demonstrated (l-5) mediate formation of a carbanionic species with a number of enzyme systems that the (ElcB mechanism).
    [Show full text]
  • Enzymes Involved in the Biosynthesis of Arginine from Ornithine in Maritime Pine (Pinus Pinaster Ait.)
    plants Article Enzymes Involved in the Biosynthesis of Arginine from Ornithine in Maritime Pine (Pinus pinaster Ait.) José Alberto Urbano-Gámez, Jorge El-Azaz, Concepción Ávila , Fernando N. de la Torre * and Francisco M. Cánovas * Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; [email protected] (J.A.U.-G.); [email protected] (J.E.-A.); [email protected] (C.Á.) * Correspondence: [email protected] (F.N.d.l.T.); [email protected] (F.M.C.) Received: 11 September 2020; Accepted: 24 September 2020; Published: 27 September 2020 Abstract: The amino acids arginine and ornithine are the precursors of a wide range of nitrogenous compounds in all living organisms. The metabolic conversion of ornithine into arginine is catalyzed by the sequential activities of the enzymes ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASSY) and argininosuccinate lyase (ASL). Because of their roles in the urea cycle, these enzymes have been purified and extensively studied in a variety of animal models. However, the available information about their molecular characteristics, kinetic and regulatory properties is relatively limited in plants. In conifers, arginine plays a crucial role as a main constituent of N-rich storage proteins in seeds and serves as the main source of nitrogen for the germinating embryo. In this work, recombinant PpOTC, PpASSY and PpASL enzymes from maritime pine (Pinus pinaster Ait.) were produced in Escherichia coli to enable study of their molecular and kinetics properties. The results reported here provide a molecular basis for the regulation of arginine and ornithine metabolism at the enzymatic level, suggesting that the reaction catalyzed by OTC is a regulatory target in the homeostasis of ornithine pools that can be either used for the biosynthesis of arginine in plastids or other nitrogenous compounds in the cytosol.
    [Show full text]
  • Enzymologic and Metabolic Studies in Two Families Affected by Argininosuccinic Aciduria
    Pediat. Res. 12: 256-262 (1978) Argininosuccinic aciduria erythrocyte enzymes argininosuccinic acid lyase urea cycle disorder enzyme kinetics protein tolerance test Enzymologic and Metabolic Studies in Two Families Affected by Argininosuccinic Aciduria I. A. QURESHI. J. LETARTE,'*' R. OUELLET, AND B. LEMIEUX Centre de Recherche Pidiatrique, Hbpital Sainfe-Justine and Universiti de Montrial, Monfrial; Diparternent de Pidiatrie, Centre Hospitalier Universitaire, UniversitP de Sherbrooke, Quebec, Canada Summaw Familial studies on argininosuccinic aciduria have also generally employed ASAL activity measurements in red blood cells. It has Both the affected families studied provide another example of been possible to identify the heterozygous or normal relatives of the autosomal recessive inheritance of argininosuccinic aciduria. the patient on the basis of the level of active enzyme in The fasting plasma levels of argininosuccinic acid in the two erythrocytes (5,7,8,14-17,21,22,25,30,35). propositi did not correlate with the levels of argininosuccinic As a part of the Quebec Network of Genetic Medicine acid lyase (ASAL) in erythrocytes. There was 210 pM argin- program in 1973 we studied two families of French-Canadian inosuccinic acid with indications of anhydride B content in the origin in which, on routine neonatal screening, one child in each family 1 propositus, having an enzyme activity of W%; while was discovered to excrete argininosuccinic acid. The diagnosis the family I1 propositus gave an argininosuccinic acidemia was confirmed by follow-up studies and erythrocyte enzyme reading of 64.6 pM with no activity of RBC ASAL. There was measurement in early 1975. This paper describes the results of a reduced enzyme activity in all the members of affected the familial biochemical, nutritional, and enzymologic studies families due to a signir~cantlyreduced V,,, value as compared undertaken recently.
    [Show full text]
  • Nitric-Oxide Supplementation for Treatment of Long-Term
    Please cite this article in press as: Nagamani et al., Nitric-Oxide Supplementation for Treatment of Long-Term Complications in Arginino- succinic Aciduria, The American Journal of Human Genetics (2012), doi:10.1016/j.ajhg.2012.03.018 ARTICLE Nitric-Oxide Supplementation for Treatment of Long-Term Complications in Argininosuccinic Aciduria Sandesh C.S. Nagamani,1,10 Philippe M. Campeau,1,10 Oleg A. Shchelochkov,1,10 Muralidhar H. Premkumar,2 Kilian Guse,1 Nicola Brunetti-Pierri,1 Yuqing Chen,1,9 Qin Sun,1 Yaoping Tang,3 Donna Palmer,1 Anilkumar K. Reddy,4 Li Li,5 Timothy C. Slesnick,6 Daniel I. Feig,6 Susan Caudle,6 David Harrison,5 Leonardo Salviati,7 Juan C. Marini,8 Nathan S. Bryan,3 Ayelet Erez,1,11 and Brendan Lee1,9,11,* Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea-cycle disorder, and leads to deficiency of both ureagenesis and NO production. Subjects with ASA have been reported to develop long-term complications such as hypertension and neurocognitive deficits despite early initiation of therapy and the absence of documented hyperammonemia. In order to distinguish the relative contributions of the hepatic urea-cycle defect from those of the NO deficiency to the phenotype, we performed liver-directed gene therapy in a mouse model of ASA. Whereas the gene therapy corrected the ureagenesis defect, the systemic hypertension in mice could be corrected by treatment with an exogenous NO source.
    [Show full text]
  • Modeling and Computational Prediction of Metabolic Channelling
    MODELING AND COMPUTATIONAL PREDICTION OF METABOLIC CHANNELLING by Christopher Morran Sanford A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Christopher Morran Sanford 2009 Abstract MODELING AND COMPUTATIONAL PREDICTION OF METABOLIC CHANNELLING Master of Science 2009 Christopher Morran Sanford Graduate Department of Molecular Genetics University of Toronto Metabolic channelling occurs when two enzymes that act on a common substrate pass that intermediate directly from one active site to the next without allowing it to diffuse into the surrounding aqueous medium. In this study, properties of channelling are investigated through the use of computational models and cell simulation tools. The effects of enzyme kinetics and thermodynamics on channelling are explored with the emphasis on validating the hypothesized roles of metabolic channelling in living cells. These simulations identify situations in which channelling can induce acceleration of reaction velocities and reduction in the free concentration of intermediate metabolites. Databases of biological information, including metabolic, thermodynamic, toxicity, inhibitory, gene fusion and physical protein interaction data are used to predict examples of potentially channelled enzyme pairs. The predictions are used both to support the hypothesized evolutionary motivations for channelling, and to propose potential enzyme interactions that may be worthy of future investigation. ii Acknowledgements I wish to thank my supervisor Dr. John Parkinson for the guidance he has provided during my time spent in his lab, as well as for his extensive help in the writing of this thesis. I am grateful for the advice of my committee members, Prof.
    [Show full text]
  • Arginine Deprivation Therapy: Putative Strategy to Eradicate Glioblastoma Cells by Radiosensitization
    Author Manuscript Published OnlineFirst on August 22, 2017; DOI: 10.1158/1535-7163.MCT-16-0807 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Hinrichs et al. Arginine deprivation radiosensitizes glioblastomas Arginine Deprivation Therapy: Putative Strategy to Eradicate Glioblastoma Cells by Radiosensitization C. Noreen Hinrichs1*, Mirjam Ingargiola1*, Theresa Käubler1, Steffen Löck1,2, Achim Temme2-4, Alvaro Köhn-Luque5, Andreas Deutsch5, Olena Vovk6, Oleh Stasyk6, Leoni A. Kunz-Schughart1,4,7# *C. Noreen Hinrichs and Mirjam Ingargiola contributed equally to this work 1OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, and Helmholtz-Zentrum Dresden – Rossendorf, Germany 2German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany 3Department of Neurosurgery, Section Experimental Neurosurgery and Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany 4National Center for Tumor Diseases (NCT), partner site Dresden, Germany 5Center for Information Services and High Performance Computing, TU Dresden, Germany 6Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine 7CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom Running title: Arginine deprivation radiosensitizes glioblastoma cells Key words: glioblastoma, metabolic targeting,
    [Show full text]
  • The Molecular Basis and Pathology of Phenotypic Variability in Urea Cycle Disorders
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 The Molecular Basis and Pathology of Phenotypic Variability in Urea Cycle Disorders Hu, Lyian Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-108004 Dissertation Published Version Originally published at: Hu, Lyian. The Molecular Basis and Pathology of Phenotypic Variability in Urea Cycle Disorders. 2014, University of Zurich, Faculty of Science. The Molecular Basis and Pathology of Phenotypic Variability in Urea Cycle Disorders Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Liyan HU aus Taizhou, Zhejiang der V.R. China Promotionskomitee Prof. Dr. sc. nat. Beat W. Schäfer (Vorsitz) Prof. Dr. med. Johannes Häberle (Leitung der Dissertation) Prof. Dr. sc. nat. Thierry Hennet PD Dr. med. Jean-Marc Nuoffer Zürich, March 2014 The present study was performed from October 2010 till March 2014 in the metabolic laboratory at the Division of Metabolism, University Children’s Hospital Zürich under the supervision of Prof. Dr. med. Johannes Häberle. Publications represented in this study: 1. Understanding the Role of Argininosuccinate Lyase Transcript Variants in the Clinical and Biochemical Variability of the Urea Cycle Disorder Argininosuccinic Aciduria Liyan Hu, Amit V. Pandey, Sandra Eggimann, Véronique Rüfenacht, Dorothea Möslinger, Jean-Marc Nuoffer, Johannes Häberle (2013) The Journal of biological chemistry 288(48), 34599-34611 2. Variant forms of the urea cycle disorder argininosuccinic aciduria are caused by folding defects of argininosuccinate lyase Liyan Hu, Amit V.
    [Show full text]
  • Enzyme Promiscuity: a Mechanistic and Evolutionary Perspective
    ANRV413-BI79-17 ARI 3 May 2010 8:37 Enzyme Promiscuity: A Mechanistic and Evolutionary Perspective Olga Khersonsky and Dan S. Tawfik Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; email: tawfi[email protected] Annu. Rev. Biochem. 2010. 79:471–505 Key Words First published online as a Review in Advance on enzyme mechanism, protein evolution, superfamilies by California Institute of Technology on 12/14/10. For personal use only. March 17, 2010 Annu. Rev. Biochem. 2010.79:471-505. Downloaded from www.annualreviews.org The Annual Review of Biochemistry is online at Abstract biochem.annualreviews.org Many, if not most, enzymes can promiscuously catalyze reactions, or This article’s doi: act on substrates, other than those for which they evolved. Here, we 10.1146/annurev-biochem-030409-143718 discuss the structural, mechanistic, and evolutionary implications of Copyright c 2010 by Annual Reviews. this manifestation of infidelity of molecular recognition. We define All rights reserved promiscuity and related phenomena and also address their generality 0066-4154/10/0707-0471$20.00 and physiological implications. We discuss the mechanistic enzymology of promiscuity—how enzymes, which generally exert exquisite speci- ficity, catalyze other, and sometimes barely related, reactions. Finally, we address the hypothesis that promiscuous enzymatic activities serve as evolutionary starting points and highlight the unique evolutionary features of promiscuous enzyme functions. 471 ANRV413-BI79-17 ARI 3 May 2010 8:37 many enzymes are capable of catalyzing other Contents reactions and/or transforming other substrates, in addition to the ones for which they are phys- INTRODUCTION .................. 472 iologically specialized, or evolved, is definitely DEFINING AND QUANTIFYING not new.
    [Show full text]