Effect of Grazing on Restoration of Endemic Dwarf Pine (Pinus Culminicola Andresen Et Beaman) Populations in Northeastern Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Grazing on Restoration of Endemic Dwarf Pine (Pinus Culminicola Andresen Et Beaman) Populations in Northeastern Mexico Effect of Grazing on Restoration of Endemic Dwarf Pine (Pinus culminicola Andresen et Beaman) Populations in Northeastern Mexico Javier Jime´nez,1,2 Enrique Jurado,1 Oscar Aguirre,1 and Eduardo Estrada1 Abstract lished: (1) seedlings protected from cattle plus small mam- A pilot experiment designed to test the effect of cattle, mals, (2) seedlings protected from cattle, and (3) seedlings small mammals, and elevation on the success of refores- with free access to cattle and small mammals. Seedling sur- tation of an endemic dwarf pine species in northeastern vival was approximately 50% in (1) after 4 years, but there Mexico was implemented. Pinus culminicola (Andresen et were no surviving seedlings with free access to cattle. Ele- Beaman) grows only in four high peaks in the Sierra Ma- vation in general did not account for variation in survival. dre Oriental and is under pressure from grazing, wildfires, Seedling growth was poor during the 4 years, which implies and human activities such as mining, road development for that seedlings remain susceptible to grazing and trampling timber extraction, and telecommunication and aerial navi- by cattle and small mammals. The implications for a large- gation devices. We planted and monitored 2-year-old seed- scale restoration program are discussed. lings at three elevations within the natural distribution range of this species at Cerro El Potosı´ in Nuevo Leo´n, Key words: cattle exclosure, grazing, Pinus culminicola, Mexico. At each elevation three treatments were estab- rehabilitation, seedling. Introduction above sea level and is the highest peak in Northern Restoration of endemic species should be done with Mexico (Garcı´a & Gonza´lez 1991). Due to its geographi- knowledge of the species biology as well as an understand- cal isolation and peculiar geological strata, it has many ing of the community organization (Gross et al. 1989; rare, endemic and endangered plant species (Rzedowski Bowles & Whelan 1994; Teketay 1997). Endangered spe- 1978). The vegetation types at the summit of Cerro El cies recovery is always difficult, and biologists need to use Potosı´ are alpine and subalpine prairie, Pinus culminicola the best tools, skills, and experience available. Hence, the (Pinaceae) matorral (shrubland), mixed forest of Pinus knowledge of the development of spatial pattern of the culminicola–P. hartwegii (Pinaceae), mixed forest of Pinus species in the communities under restoration allows for hartwegii–P. culminicola, mixed forest of Abies vejari a better understanding of the interactions between ani- (Pinaceae)–Pseudotsuga menziesii (Pinaceae)–Pinus hart- mals and plants in the ecosystem (Dale 2000). wegii–P. ayacahuite (Pinaceae), and forests of Pinus hart- Fragmentation and habitat loss are the main threats to wegii. Endemic and rare plant species in the area include the survival of most endangered species; hence, the in- Pinus culminicola, Juniperus sabinoides (Cupressaceae), clusion of dynamic processes of plant communities in res- Lupinus cacuminis (Fabaceae), Hackelia leontis (Boragi- toration plans would result in lower habitat loss and naceae), Erigeron potosinus (Asteraceae), Senecio hinto- fragmentation (Falk et al. 1996; Pickett et al. 1997; Tucker niorum (Asteraceae), and Arracacia schneideri (Apiaceae) & Murphy 1997; Huxel & Hastings 1999; Jime´nez et al. and the endangered plant species Ageratina potosina 1999). Lesica and Allendorf (1999) argue that a primary (Asteraceae), Astranthium beamanii (Asteraceae), Castilleja goal of restoration is the establishment of long-term viable bella (Scrophulariaceae), Stachys vulnerabilis (Lamia- populations that will restore ecosystem functions and pro- ceae), Poa mulleri (Poaceae), Potentilla leonine (Rosa- cesses, prevent erosion, and protect biological diversity. ceae), Trifolium schneideri (Fabaceae), Viola galeanaensis The protected natural area ‘‘Cerro El Potosı´’’ is located (Violaceae), and Arracacia. tolucensis (Apiaceae) (Mc- in the Sierra Madre Oriental, in the southern part of the Donald 1990; Garcı´a&Gonza´lez 1991). Some animal spe- State of Nuevo Leo´n, Mexico; it has an elevation of 3,670 m cies in the area are also considered endangered (Golden Eagle [Aquila chrysaetos], Maroon-fronted Parrot [Rhyn- chopsitta terrisi], Harris’ (Bay wing) Hawk [Parabuteo uni- 1 Facultad de Ciencias Forestales, Universidad Auto´ noma de Nuevo Leo´ n, cinctus], American Gold Finch [Carduelis tristis], Black bear Apartado Postal 89 67700 Linares, Nuevo Leo´ n, Me´xico [Ursus americanus eremicus]) or endemic (Painted Redstart 2 Address correspondence to J. Jime´nez, email [email protected] [Myioborus pictus], Carmen mountain shrew [Sorex milleri], Ó 2005 Society for Ecological Restoration International Flat headed myotis bat [Myotis planiceps], Coyote [Canis MARCH 2005 Restoration Ecology Vol. 13, No. 1, pp. 103–107 103 Effect of Grazing on Dwarf Pine Restoration latrans mearnsi]) (Guzma´n 1998; Garcı´a et al. 1999; Jime´nez Experiment et al. 2002). The experiment was laid out in December 1997 at three Dwarf pine (P. culminicola) was described by Andresen elevations and vegetation types: (1) high elevation at and Beaman (1961) as a new species endemic to Cerro El 3,500 m in Pinus culminicola matorral, (2) intermediate Potosı´. Later the same authors described the distribution elevation at 3,400 m in P. culminicola–P. hartwegii for- of the species as a total of 106 ha (Beaman & Andresen est, and (3) lower elevation at 3,300 m in P. hartwegii– 1966). In 1975 the species was also found in three other P. culminicola forest. At each elevation three square plots sites of the same Sierra (Sierra La Marta and Sierra La of 625 m2 were established for planting 2-year-old dwarf Viga in the state of Coahuila, and Cerro Pen˜aNevadain pine seedlings that had been grown in a seedling nursery. Nuevo Leo´n) with similar spatial patterns and altitudinal Three treatments were made for each plot: (1) small mam- distribution ranges to those determined for Cerro El Potosı´ mal plus cattle exclusion (chicken wire), (2) cattle exclu- (Riskind & Patterson 1975). In 1978 wildfires at Cerro El sion (barbed wire), and (3) free range. For each treatment Potosı´ burned 34% of the dwarf pine population (Garcı´a at each elevation, 110 seedlings were planted at a density 1989). During the past four decades, a reduction of the area of approximately 2 seedlings in each 10 m2. At the time formerly covered by dwarf pine has been observed, due to of planting, seedlings were approximately 100 mm tall and human impact involving timber extraction, road building, 5 mm in stem diameter. and land use change for the development of telecom- munication and aerial navigation infrastructure. A manga- nese mine was opened and later abandoned in the region Monitoring (Jime´nez et al. 1996). Recently (1998), several wildfires All planted seedlings were labeled so they could be drastically reduced the area formerly covered by dwarf distinguished from any naturally established seedlings. We pine at Cerro El Potosı´. Currently, only 30 ha of frag- monitored seedlings annually from November 1998 to mented dwarf pine area exist at Cerro El Potosı´, and these November 2001. Plant survival was determined by check- include many old trees with low seed production that are ing the position of each planted seedling. Stem diameter subject to cattle grazing (Jime´nez et al. 1999). The species and total height were measured for all surviving seedlings. is now considered endemic and is subject to special protec- To test whether grazing and elevation affected seedling sur- tion (Diario Oficial de la Federacio´ n 2000). There are no vival, we used a two-way analysis of variance (ANOVA). studies of P. culminicola populations in the other moun- To test whether elevation affected seedling growth in tains where it occurs; unfortunately these areas are not pro- diameter and height, we used one-way ANOVA. tected and are also subjected to grazing and wildfires. In spite of the uniqueness of the species, there are few published studies of the ecology of dwarf pine. Garza et al. (2002) described a high fungal diversity (51 species of mac- Results romycetes from 19 families and 42 genera) associated with P. culminicola. Aguirre et al. (2001) described the vegeta- Seedling Survival tion types of the area and examined the stem density pat- Both elevation and exclosure had an effect on seedling tern of P. culminicola and P. hartwegii and found the survival (p = 0.0016) for the duration of this experiment. former to be more abundant at higher elevations. In this Seedling mortality was high in all treatments, with only study we tested restoration techniques for P. culminicola, about 50% of seedlings surviving 4 years after planting in through replanting and the use of herbivore exclosures in the areas excluded for cattle and small mammals (Fig. 1). the protected natural area Cerro El Potosı´, within its natu- Seedling survival was significantly higher in areas ex- ral distribution range. cluded from both cattle and small vertebrates than in areas with cattle exclosures only. Survival was much lower where no exclosure was used (Fig. 1). Many seedlings in the free-range treatment were grazed and trampled, al- Methods though this did not happen uniformly to all seedlings. This implies that grazing is low and erratic in the area. How- Study Area ever, 2 years after planting, more than 80% of seedlings The study site is located at the top of the protected natural had died at the highest elevation. By the fourth year after area Cerro El Potosı´, in the south of the State of Nuevo planting, no free-range seedlings had survived at any ele- Leo´ n, Mexico (lat 24°320N, long 100°130W). This moun- vation. Where small mammals were not excluded, seed- tain is within the Sierra Madre Oriental range, between lings were found to be nibbled and occasionally had the Gulf Coastal Plain and the Mexican High Plateau. The broken stems. This damage was also present, although mountain top is exposed to high winds for most of the rarely, in the area excluded for cattle plus small mammals, year.
Recommended publications
  • Current and Potential Spatial Distribution of Six Endangered Pine Species of Mexico: Towards a Conservation Strategy
    Article Current and Potential Spatial Distribution of Six Endangered Pine Species of Mexico: Towards a Conservation Strategy Martin Enrique Romero-Sanchez * , Ramiro Perez-Miranda, Antonio Gonzalez-Hernandez, Mario Valerio Velasco-Garcia , Efraín Velasco-Bautista and Andrés Flores National Institute on Forestry, Agriculture and Livestock Research, Progreso 5, Barrio de Santa Catarina, Coyoacan, 04010 Mexico City, Mexico; [email protected] (R.P.-M.); [email protected] (A.G.-H.); [email protected] (M.V.V.-G.); [email protected] (E.V.-B.); fl[email protected] (A.F.) * Correspondence: [email protected]; Tel.: +52-553-626-8698 Received: 24 October 2018; Accepted: 6 December 2018; Published: 12 December 2018 Abstract: Mexico is home to the highest species diversity of pines: 46 species out of 113 reported around the world. Within the great diversity of pines in Mexico, Pinus culminicola Andresen et Beaman, P. jaliscana Perez de la Rosa, P. maximartinenzii Rzed., P. nelsonii Shaw, P. pinceana Gordon, and P. rzedowskii Madrigal et M. Caball. are six catalogued as threatened or endangered due to their restricted distribution and low population density. Therefore, they are of special interest for forest conservation purposes. In this paper, we aim to provide up-to-date information on the spatial distribution of these six pine species according to different historical registers coming from different herbaria distributed around the country by using spatial modeling. Therefore, we recovered historical observations of the natural distribution of each species and modelled suitable areas of distribution according to environmental requirements. Finally, we evaluated the distributions by contrasting changes of vegetation in the period 1991–2016.
    [Show full text]
  • Disturbances Influence Trait Evolution in Pinus
    Master's Thesis Diversify or specialize: Disturbances influence trait evolution in Pinus Supervision by: Prof. Dr. Elena Conti & Dr. Niklaus E. Zimmermann University of Zurich, Institute of Systematic Botany & Swiss Federal Research Institute WSL Birmensdorf Landscape Dynamics Bianca Saladin October 2013 Front page: Forest of Pinus taeda, northern Florida, 1/2013 Table of content 1 STRONG PHYLOGENETIC SIGNAL IN PINE TRAITS 5 1.1 ABSTRACT 5 1.2 INTRODUCTION 5 1.3 MATERIAL AND METHODS 8 1.3.1 PHYLOGENETIC INFERENCE 8 1.3.2 TRAIT DATA 9 1.3.3 PHYLOGENETIC SIGNAL 9 1.4 RESULTS 11 1.4.1 PHYLOGENETIC INFERENCE 11 1.4.2 PHYLOGENETIC SIGNAL 12 1.5 DISCUSSION 14 1.5.1 PHYLOGENETIC INFERENCE 14 1.5.2 PHYLOGENETIC SIGNAL 16 1.6 CONCLUSION 17 1.7 ACKNOWLEDGEMENTS 17 1.8 REFERENCES 19 2 THE ROLE OF FIRE IN TRIGGERING DIVERSIFICATION RATES IN PINE SPECIES 21 2.1 ABSTRACT 21 2.2 INTRODUCTION 21 2.3 MATERIAL AND METHODS 24 2.3.1 PHYLOGENETIC INFERENCE 24 2.3.2 DIVERSIFICATION RATE 24 2.4 RESULTS 25 2.4.1 PHYLOGENETIC INFERENCE 25 2.4.2 DIVERSIFICATION RATE 25 2.5 DISCUSSION 29 2.5.1 DIVERSIFICATION RATE IN RESPONSE TO FIRE ADAPTATIONS 29 2.5.2 DIVERSIFICATION RATE IN RESPONSE TO DISTURBANCE, STRESS AND PLEIOTROPIC COSTS 30 2.5.3 CRITICAL EVALUATION OF THE ANALYSIS PATHWAY 33 2.5.4 PHYLOGENETIC INFERENCE 34 2.6 CONCLUSIONS AND OUTLOOK 34 2.7 ACKNOWLEDGEMENTS 35 2.8 REFERENCES 36 3 SUPPLEMENTARY MATERIAL 39 3.1 S1 - ACCESSION NUMBERS OF GENE SEQUENCES 40 3.2 S2 - TRAIT DATABASE 44 3.3 S3 - SPECIES DISTRIBUTION MAPS 58 3.4 S4 - DISTRIBUTION OF TRAITS OVER PHYLOGENY 81 3.5 S5 - PHYLOGENETIC SIGNAL OF 19 BIOCLIM VARIABLES 84 3.6 S6 – COMPLETE LIST OF REFERENCES 85 2 Introduction to the Master's thesis The aim of my master's thesis was to assess trait and niche evolution in pines within a phylogenetic comparative framework.
    [Show full text]
  • Cómo Citar El Artículo Número Completo Más Información Del
    Ecosistemas y recursos agropecuarios ISSN: 2007-9028 ISSN: 2007-901X Universidad Juárez Autónoma de Tabasco, Dirección de Investigación y Posgrado Jiménez-Pérez, Javier; Yerena-Yamallel, José Israel; Alanís- Rodríguez, Eduardo; Aguirre-Calderón, Oscar; Martínez-Barrón, René Effect of cattle and wildlife exclusion areas on the survival and growth of Pinus culminicola Andresen & Beaman Ecosistemas y recursos agropecuarios, vol. 5, núm. 13, 2018, Enero-Abril, pp. 157-163 Universidad Juárez Autónoma de Tabasco, Dirección de Investigación y Posgrado DOI: https://doi.org/10.19136/era.a5n13.1043 Disponible en: https://www.redalyc.org/articulo.oa?id=358655230020 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Jiménez-Pérez et al. Survival and growth of Pinus culminicola Ecosist. Recur. Agropec. 5(13):157-163,2018 Eect of cattle and wildlife exclusion areas on the survival and growth of Pinus culminicola Andresen & Beaman Efecto de las áreas de exclusión para ganado y fauna silvestre en la sobrevivencia y crecimiento de Pinus culminicola Andresen & Beaman Javier Jiménez-Pérez1, José Israel Yerena-Yamallel1∗, Eduardo Alanís-Rodríguez1, Oscar Aguirre-Calderón1, René Martínez-Barrón1 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales, Carretera Nacional km 145, CP. 67700, Linares, Nuevo León, México. ∗Corresponding author: [email protected] Scientic note received: March 15, 2016 accepted: August 29, 2017 ABSTRACT. In 1997, a restoration of Pinus culminicola was established under three exclusion areas: E1 = cattle plus small mammal exclusion, E2 = cattle exclusion and E3 = no exclusion (free range), in the Cerro El Potosi Protected Natural Area, located in Nuevo León, Mexico.
    [Show full text]
  • Mistletoes of North American Conifers
    United States Department of Agriculture Mistletoes of North Forest Service Rocky Mountain Research Station American Conifers General Technical Report RMRS-GTR-98 September 2002 Canadian Forest Service Department of Natural Resources Canada Sanidad Forestal SEMARNAT Mexico Abstract _________________________________________________________ Geils, Brian W.; Cibrián Tovar, Jose; Moody, Benjamin, tech. coords. 2002. Mistletoes of North American Conifers. Gen. Tech. Rep. RMRS–GTR–98. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 123 p. Mistletoes of the families Loranthaceae and Viscaceae are the most important vascular plant parasites of conifers in Canada, the United States, and Mexico. Species of the genera Psittacanthus, Phoradendron, and Arceuthobium cause the greatest economic and ecological impacts. These shrubby, aerial parasites produce either showy or cryptic flowers; they are dispersed by birds or explosive fruits. Mistletoes are obligate parasites, dependent on their host for water, nutrients, and some or most of their carbohydrates. Pathogenic effects on the host include deformation of the infected stem, growth loss, increased susceptibility to other disease agents or insects, and reduced longevity. The presence of mistletoe plants, and the brooms and tree mortality caused by them, have significant ecological and economic effects in heavily infested forest stands and recreation areas. These effects may be either beneficial or detrimental depending on management objectives. Assessment concepts and procedures are available. Biological, chemical, and cultural control methods exist and are being developed to better manage mistletoe populations for resource protection and production. Keywords: leafy mistletoe, true mistletoe, dwarf mistletoe, forest pathology, life history, silviculture, forest management Technical Coordinators_______________________________ Brian W. Geils is a Research Plant Pathologist with the Rocky Mountain Research Station in Flagstaff, AZ.
    [Show full text]
  • Conifer Quarterly
    Conifer Quarterly Vol. 25 No. 4 Fall 2008 Pinus heldreichii ‘Smidtii’ 2009 Collectors Conifer of the Year Dwarf Selection Photo credit: Randall C. Smith, courtesy of Iseli Nursery A scene featuring a pendulous form of Tsuga canadensis from the International ACS Czech Republic Tour taken in the Holata garden in Leder by Jim Kelley The Conifer Quarterly is the publication of the American Conifer Society Contents 6 The Hemlocks Text and photos by Dr. Bert Cregg 12 Edsel Wood and His Tsuga Seedlings by Don Howse 17 Name that Plant - The Misuse of Trademarks in Horticulture by Tony Avent 24 Collectors Conifer of the Year 27 Planting Guide for Difficult to Establish Conifers by Ridge Goodwin, Director CCOY Program featuring: Success with Difficult to Establish Conifers by Gerald P.Kral & Elmer Dustman 31 In Search of Conifers and Other Garden-worthy Plants Text and photos by Tom Cox 40 Eek! Bag Worms on the March! by Ellen Kelley Conifer Society Voices 2 President’s Message 4 Editor’s Memo 41 Leaders’ Spotlight on Ridge Goodwin 44 Letter to the Editor 45 New Members 46 ACS 2009 National Meeting Vol. 25 No. 4 CONIFER QUARTERLY 1 Conifer FROM THE PRESIDENT’S DESK his summer, the ACS held two important events. First, we th Quarterly Tcelebrated the 25 anniversary of the founding of the American Conifer Fall 2008 Society. At the National Meeting in Volume 25, No 4 Dubuque, Iowa, 200 people learned more The Conifer Quarterly (ISSN 8755-0490) is about the history of the organization and published quarterly by the American Conifer honored the past presidents who have led Society.
    [Show full text]
  • Photo Series for Quantifying Forest Fuels in Mexico Is a Tool for Quickly 1984)6
    University of Fotoseries para la Cuantificación de Combustibles Washington Forestales de México: College of Forest Resources Bosques Montanos Subtropicales de la Sierra Madre del Sur y Bosques Templados y Matorral Submontano del Norte de la Sierra Madre Oriental Month 2007 Photo Series for Quantifying Forest Fuels in México: Montane Subtropical Forests of the Sierra Madre del Sur, and Temperate Forests and Montane Shrubland of the Northern Sierra Madre Oriental United States Forest Service Pacific Northwest Jorge E. Morfín-Ríos, Ernesto Alvarado-Celestino, Enrique J. Jardel-Peláez, Research Station Robert E. Vihnanek, David K. Wright, José M. Michel-Fuentes, Clinton S. Wright, Roger D. Ottmar, David V. Sandberg & Andrés Nájera-Díaz. Universidad de Guadalajara United States Agency for International Development Fondo Mexicano para la Conservación de la Naturaleza Fotoseries para la Cuantificación de Combustibles Forestales de University of México: Washington Bosques Montanos Subtropicales de la Sierra Madre del Sur y College of Forest Resources Bosques Templados y Matorral Submontano del Norte de la Sierra Madre Oriental Photo Series for Quantifying Forest Fuels in México: Month 2007 Montane Subtropical Forests of the Sierra Madre del Sur, and Temperate Forests and Montane Shrubland of the Northern Sierra Madre Oriental Jorge E. Morfín-Ríos, Ernesto Alvarado-Celestino, Enrique J. Jardel-Peláez, Robert E. Vihnanek, David K. Wright, José M. Michel-Fuentes, Clinton S. Wright, Roger D. Ottmar, David V. Sandberg & Andrés Nájera-Díaz. United States Forest Service Pacific Northwest Research Station Universidad de Guadalajara United States Agency for International Development Fondo Mexicano para la Conservación de la Naturaleza RESUMEN ABSTRACT Morfín Ríos, J.E.; Alvarado Celestino, E.; Jardel Peláez, E.J.; Vihnanek, Morfín Ríos, J.E.; Alvarado Celestino, E.; Jardel Peláez, E.J.; Vihnanek, R.E.; Wright, D.K.; Michel Fuentes, J.M.; Wright, C.S.; Ottmar, R.D.; R.E.; Wright, D.K.; Michel Fuentes, J.M.; Wright, C.S.; Ottmar, R.D.; Sandberg, D.V.; Nájera Díaz, A.
    [Show full text]
  • Redalyc.Can We Expect to Protect Threatened Species in Protected
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Aguirre Gutiérrez, Jesús; Duivenvoorden, Joost F. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico Revista Mexicana de Biodiversidad, vol. 81, núm. 3, 2010, pp. 875-882 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42518439027 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 81: 875 - 882, 2010 Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico Podemos proteger especies en riesgo en áreas protegidas? Un estudio de caso del genero Pinus en México Jesús Aguirre Gutiérrez* and Joost F. Duivenvoorden Institute for Biodiversity and Ecosystems Dynamics (IBED), Universiteit van Amsterdam, Science Park 904, 1098 HX, Amsterdam, The Netherlands. *Correspondent: [email protected] Abstract. The distribution of 56 Pinus species in Mexico was modelled with MAXENT. The pine species were classified as threatened according to IUCN criteria. Our aim was to ascertain whether or not threatened pine species were adequately represented in protected areas. Almost 70% of the species had less than 10% of their modelled distribution area protected. None of the pine species reached their representation targets. Threatened pine species were less widely distributed, occurred at lower maximum elevations, and were less well represented in protected areas than other pine species.
    [Show full text]
  • A. Summary List and Discussion of Single Fossils. Small Fossil Set Additional Fossils of the Large Fossil
    A. Summary list and discussion of single fossils. Small fossil set - Pinus baileyi. 45 Ma; stem section Pinus - Pinus canariensis. 12.8 Ma; stem P. canariensis - P. roxburghii (clade) - Pinus crossii. 27 Ma; stem subsection Balfourianae - Pinus densiflora. 1.1 Ma; P. densiflora – P. sylvestris divergence - Pinus florissantii. 34 Ma; stem subsection Strobus - Pinus fujiii. 15 Ma; stem MRCA of P. kesiya and P. tabuliformis - Pinus haboroensis. 65 Ma; stem subgenus Pinus - Pinus halepensis. 12.8 Ma; P. halepensis – P. brutia divergence - Pinus hazenii. 5 Ma; P. coulteri – P. sabiniana divergence - Pinus prekesiya. 5.3 Ma; P. yunnanensis – P. kesiya divergence - Pinus radiata. 0.4 Ma; P. radiata – P. muricata divergence - Pinus storeyana. 12 Ma; stem or within Attenuatae clade - Pinus triphylla. 90 Ma; stem subgenus Pinus - Pinus yorkshirensis. 129 Ma; stem Pinus Additional fossils of the large fossil set - Pinus delmarensis. 38 Ma; stem subsection Strobus - Pinus lindgrenii. 6 Ma; MRCA of P. edulis - P. johannis clade - Pinus premassoniana. 5.3 Ma; stem of P. massoniana - Pinus riogrande. 27.2 Ma; Ponderosae clade - Pinus sanjuanensis. 27 Ma; stem of subsection Cembroides - Pinus truckeensis. 12 Ma; subsection Ponderosae within P. ponderosa - clade - Pinus weasmaii. 3 Ma; stem of P. contorta Genus Pinus Pinus yorkshirensis Location: Wealden Formation, NE England Age: 131-129 Ma. Discussion: These are the earliest well-dated cones that belong to the genus Pinus, based on internal anatomy and external morphology, such as the presence of cone scales with apophyses and umbos, features unique to Pinus among extant Pinaceae (Ryberg et al., 2012). Another early representative from the Wealden Formation (P.
    [Show full text]
  • Modelado De La Distribución Actual Y Bajo Cambio Climático De Pinos
    Revista Mexicana de Ciencias Forestales Vol. 10 (56) Noviembre –Diciembre (2019) DOI: https://doi.org/10.29298/rmcf.v10i56.613 Article Modelado de la distribución actual y bajo cambio climático de pinos piñoneros endémicos de México Modeling of the current distribution and under climate change of endemic pinyon pines of Mexico Ramiro Pérez Miranda1, Martín Enrique Romero Sánchez1*, Antonio González Hernández1, Sergio Rosales Mata2, Francisco Moreno Sánchez1 y Víctor Javier Arriola Padilla1 Resumen En la actualidad algunos pinos endémicos de México están en riesgo, debido a diversos factores, tanto antrópicos como relacionados con alteraciones climáticas. En este trabajo se modeló la distribución potencial actual y bajo escenarios de cambio climático de cuatro especies de pinos piñoneros. Para ello, se utilizaron coberturas bioclimáticas y datos de presencia de los taxones considerados, como variables predictoras. Los resultados sugieren una buena predicción de los patrones de distribución geográfica (AUC> 0.9 en todos los casos). La distribución potencial alta generada con el modelo GFDL-CM3, para el horizonte 2049-2065 escenarios RCP 4.5 tuvo modificaciones especificas por taxon en su superficie. Las especies más sensibles fueron Pinus culminicola, P. johannis y P. pinceana que evidenciaron reducciones de 83.6, 59.5 y 80.0 %, respectivamente; comparados con la superficie actual. En el escenario RCP 8.5, las reducciones de estos taxa fueron de 83.7, 56.9 y 79.3 %, para cada una. Los modelos de distribución de P. nelsonii mostraron, para ambos escenarios climáticos (RCP 4.5 y 8.5), aumentos en la extensión potencial alta con respecto a la actual hasta de 50.8 % y 49.5 %, respectivamente.
    [Show full text]
  • Volume 55, Number 2 01/02/2020
    BULLETIN of the Chicago Herpetological Society Volume 55, Number 2 February 2020 BULLETIN OF THE CHICAGO HERPETOLOGICAL SOCIETY Volume 55, Number 2 February 2020 A Case of Predation by Naja samarensis (Elapidae) on Cyclocorus nuchalis nuchalis (Lamprophiidae) on Mindanao Island, Philippines . Olivier S. G. Pauwels and Jonathan Brecko 25 Notes on Mexican Herpetofauna 34: Herpetofauna Associated with Pine Forests in Nuevo León, Mexico . David Lazcano, Juan Antonio García-Salas, Javier Banda-Leal, Larry David Wilson, Susana Favela-Lara, Miriam Elizabeth Solis-Baraja and Silvana Pacheco-Treviño 27 The Odyssey of 10,000 Beers: The First Six-pack of the Suizo Mountain Project . Roger A. Repp 40 Minutes of the CHS Board Meeting, January 17, 2020 . 45 What You Missed at the January Meeting: Mike Stefani . .John Archer 46 Advertisements . 48 New CHS Members This Month . 48 Cover: Ventral view of a preserved juvenile Naja samarensis and its ingested prey in situ, an adult Cyclocorus nuchalis nuchalis from Mindanao Island, Philippines. ìCT scan by Jonathan Brecko. STAFF Membership in the CHS includes a subscription to the monthly Bulletin. Annual dues are: Individual Membership, $25.00; Editor: Michael A. Dloogatch --- [email protected] Family Membership, $28.00; Sustaining Membership, $50.00; Copy editor: Joan Moore Contributing Membership, $100.00; Institutional Membership, $38.00. Remittance must be made in U.S. funds. Subscribers 2019 CHS Board of Directors outside the U.S. must add $12.00 for postage. Send membership dues or address changes to: Chicago Herpetological Society, President: John Gutierrez Membership Secretary, 2430 N. Cannon Drive, Chicago, IL 60614. Vice-president: Jessica Wadleigh Treasurer: John Archer Manuscripts published in the Bulletin of the Chicago Herpeto- Recording Secretary: Gail Oomens logical Society are not peer reviewed.
    [Show full text]
  • Can We Expect to Protect Threatened Species in Protected Areas? a Case Study of the Genus Pinus in Mexico
    Revista Mexicana de Biodiversidad 81: 875 - 882, 2010 Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico Podemos proteger especies en riesgo en áreas protegidas? Un estudio de caso del genero Pinus en México Jesús Aguirre Gutiérrez* and Joost F. Duivenvoorden Institute for Biodiversity and Ecosystems Dynamics (IBED), Universiteit van Amsterdam, Science Park 904, 1098 HX, Amsterdam, The Netherlands. *Correspondent: [email protected] Abstract. The distribution of 56 Pinus species in Mexico was modelled with MAXENT. The pine species were classified as threatened according to IUCN criteria. Our aim was to ascertain whether or not threatened pine species were adequately represented in protected areas. Almost 70% of the species had less than 10% of their modelled distribution area protected. None of the pine species reached their representation targets. Threatened pine species were less widely distributed, occurred at lower maximum elevations, and were less well represented in protected areas than other pine species. The results suggest that the present system of protected areas in Mexico fails to protect pine species adequately. Conservation targets should be especially directed to species with narrow distributions which occur at low altitudes, such as Pinus. attenuata, P. cembroides subsp. cembroides var. lagunae, P. radiata var. binata, P. rzedowskii, and P. muricata. Key words: MAXENT, species distribution model, IUCN, conservation. Resumen. La distribución de 56 especies del género Pinus en México fue modelada por medio de MAXENT. Nuestro objetivo principal fue investigar si las especies de pino clasificadas por IUCN como amenazadas tienen una representación adecuada en las áreas protegidas de México.
    [Show full text]
  • E Ect of Cattle and Wildlife Exclusion Areas on the Survival and Growth of Pinus Culminicola Andresen & Beaman Efecto De
    Jiménez-Pérez et al. Survival and growth of Pinus culminicola Ecosist. Recur. Agropec. 5(13):157-163,2018 Eect of cattle and wildlife exclusion areas on the survival and growth of Pinus culminicola Andresen & Beaman Efecto de las áreas de exclusión para ganado y fauna silvestre en la sobrevivencia y crecimiento de Pinus culminicola Andresen & Beaman Javier Jiménez-Pérez1, José Israel Yerena-Yamallel1∗, Eduardo Alanís-Rodríguez1, Oscar Aguirre-Calderón1, René Martínez-Barrón1 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales, Carretera Nacional km 145, CP. 67700, Linares, Nuevo León, México. ∗Corresponding author: [email protected] Scientic note received: March 15, 2016 accepted: August 29, 2017 ABSTRACT. In 1997, a restoration of Pinus culminicola was established under three exclusion areas: E1 = cattle plus small mammal exclusion, E2 = cattle exclusion and E3 = no exclusion (free range), in the Cerro El Potosi Protected Natural Area, located in Nuevo León, Mexico. The objective of this study was to determine the survival rate and the increase in diameter and height of Pinus culminicola individuals at three and 17 years after planting. The results show dierences between 2000 and 2014 in survival rate and diameter and height growth in the three exclusion areas; E1 and E2 recorded higher averages. The main causes of mortality in this species are attributed to extreme weather conditions and the damage caused by cattle and small mammals. Key words: Degradation, exclusion, Pinus culminicola, restoration, survival RESUMEN. En 1997 se estableció una restauración de Pinus culminicola en tres áreas de exclusión: E1 = exclusión de ganado mayor + exclusión de mamíferos menores, E2 = exclusión de ganado mayor y E3 = sin exclusión, en el Área Natural Protegida Cerro El Potosí, Nuevo León, México.
    [Show full text]