Effect of Culture Temperature on Rotifers (Brachionus Plicatilis Sensu Strictu) Size and Reproduction Activities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Taxonomy of Brachionus Plicatilis Species Complex (Rotifera: Monogononta) from the Southern Kerala (India) with a Note on Their Repro- Ductive Preferences
J. Mar. Biol. Ass. India, 48 (I) : 6 - 13, January - June 2006 The taxonomy of Brachionus plicatilis species complex (Rotifera: Monogononta) from the Southern Kerala (India) with a note on their repro- ductive preferences P. S Anitha and Rani Mary George Central Marine Fisheries Research Institute, P. B. No. 1603, Ernakulam North P. O., Cochin-682 018, India E. mail: [email protected] Abstract This paper deals with the species of Brackionu.s plicatilis complex (Rotifera: Monogononta) found in a brackishwater lake,Veli-Aakulam, in Southern Kerala. Morphological and reproductive potential studies revealed that these rotifers have sigiificant morphological distinction with regard to ecological preferences. The three related rotifers in our study were classified as Brachionu.~plicatilis Miiller, 1786, B. rotundifi)rmi.s Tschugunoff, 1921 and B. murrayi Fadeew, 1925. The fine morphology and morphometric data revealed that taxonomic characters were constant enough to recognize three well-defined morphologies and B. rrlurrayi is redescribed. The reproductive potential studies in relation to ecological parameters showed that the 'r' values of these rotifers were significantly influenced by salinity as well as temperature, and was species specific. In the light of reproductive preferences, the reorganization of three distinct species has been confirmed by this study and this would allow further comparative work in these lines on this economically important species complex. Keywords: Brachionus plicatilis species complex, reproductive preferences Introduction Among brachionid rotifers, Brachionus plicatilis The occurrence of B. plicatilis in Indian waters was Miiller, 1786 (Monogononta) is probably one of the best- noted by a few numbers of workers (Rao and Mohan, studied taxa because of its suitability as an initial live feed 1984; Shakuntala and Singh, 1993; Gopakumar and for various finfish and shellfish larvae (Lubzens, 1987). -
Investigation of a Rotifer (Brachionus Calyciflorus) - Green Alga (Scenedesmus Pectinatus) Interaction Under Non- and Nutrient-Limi- Ted Conditions
Ann. Limnol. - Int. J. Lim. 2006, 42 (1), 9-17 Investigation of a rotifer (Brachionus calyciflorus) - green alga (Scenedesmus pectinatus) interaction under non- and nutrient-limi- ted conditions M. Lürling Aquatic Ecology & Water Quality Management, Department of Environmental Sciences, Wageningen University, PO Box 8080, NL-6700DD Wageningen, The Netherlands Two-day life cycle tests with the rotifer Brachionus calyciflorus were run to study the nutritional quality effects to rotifers of Scenedesmus pectinatus grown under non-limiting, nitrogen limiting and phosphorus limiting conditions and the feedback of the rotifers on the food algae. Under nutrient-limited conditions of its algal food Brachionus production was depressed, animals pro- duced fewer eggs and were smaller sized. Clearance rates of Brachionus offered non-nutrient-limited and nutrient-limited food were similar. The number of cells per colony was similar for S. pectinatus under nitrogen limited and phosphorus limited condi- tions both in the absence and presence of Brachionus. Cell volumes of phosphorus limited S. pectinatus were larger than those of nitrogen limited cells. The most dramatic response of the food alga S. pectinatus was observed in non-nutrient-limited condi- tions: a strong size enlargement occurred only in the presence of Brachionus. This was caused by a higher share of eight-celled colonies and larger individual cell volumes in the presence of rotifers than in their absence. S. pectinatus might gain an advan- tage of becoming larger in moving out of the feeding window of its enemy, but nutrient limited conditions might undermine the effectiveness of such reaction. Keywords : clearance rate, food quality, grazing, induced defence, morphology, plankton interactions Introduction constraints on growth, but also food quality constraints. -
Diplomarbeit
DIPLOMARBEIT Titel der Diplomarbeit Zooplankton dynamics of two alkaline-saline lakes in the Kenyan Rift Valley Angestrebter akademischer Grad: Magister der Naturwissenschaften (Mag. rer. nat.) Verfasser: Alfred Burian Studienrichtung: Zoologie Betreuer: Prof. Michael Schagerl - 1 - Population of Lesser Flamingo at the shores of Lake Bogoria. - 2 - Table of content 1. Introduction to the ecology of East African salt lakes (German).......................................- 4 - 3. Feeding behaviour of dominant zooplankton grazers and their influence on phytoplankton and the microbial loop in saline-alkaline Kenyan Rift Valley Lakes....................................... 36 4. Zooplankton dynamics of tropical saline lakes: an analysis of rotifer biomass outbursts. .. 64 5. English summary.................................................................................................................. 91 6. Deutsche Kurzzusammenfassung......................................................................................... 93 7. Acknowledgements:............................................................................................................. 95 8. Curriculum Vitae: Alfred Burian ......................................................................................... 96 - 3 - 1. Introduction to the ecology of East African salt lakes (German) Die Salzseen des ostafrikanischen Grabenbruchs sind nicht nur durch ihre atemberaubende Landschaft einzigartig, sondern heben sich auch durch eine Reihe von Umwelt- und biologischen Faktoren -
Download Download
ISSN 0974-7907 (Online) OPEN ACCESS ISSN 0974-7893 (Print) 26 October 2018 (Online & Print) Vol. 10 | No. 11 | 12443–12618 10.11609/jot.2018.10.11.12443-12618 www.threatenedtaxa.org Building evidence for conservatonJ globally TTJournal of Threatened Taxa YOU DO ... ... BUT I DON’T SEE THE DIFFERENCE. ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Published by Typeset and printed at Wildlife Informaton Liaison Development Society Zoo Outreach Organizaton No. 12, Thiruvannamalai Nagar, Saravanampat - Kalapat Road, Saravanampat, Coimbatore, Tamil Nadu 641035, India Ph: 0 938 533 9863 Email: [email protected], [email protected] www.threatenedtaxa.org EDITORS Christoph Kuefer, Insttute of Integratve Biology, Zürich, Switzerland Founder & Chief Editor Christoph Schwitzer, University of the West of England, Clifon, Bristol, BS8 3HA Dr. Sanjay Molur, Coimbatore, India Christopher L. Jenkins, The Orianne Society, Athens, Georgia Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines Managing Editor Colin Groves, Australian Natonal University, Canberra, Australia Mr. B. Ravichandran, Coimbatore, India Crawford Prentce, Nature Management Services, Jalan, Malaysia C.T. Achuthankuty, Scientst-G (Retd.), CSIR-Natonal Insttute of Oceanography, Goa Associate Editors Dan Challender, University of Kent, Canterbury, UK Dr. B.A. Daniel, Coimbatore, India D.B. Bastawade, Maharashtra, India Dr. Ulrike Streicher, Wildlife Veterinarian, Danang, Vietnam D.J. Bhat, Retd. Professor, Goa University, Goa, India Ms. Priyanka Iyer, Coimbatore, India Dale R. Calder, Royal Ontaro Museum, Toronto, Ontario, Canada Dr. Manju Siliwal, Dehra Dun, India Daniel Brito, Federal University of Goiás, Goiânia, Brazil Dr. Meena Venkataraman, Mumbai, India David Mallon, Manchester Metropolitan University, Derbyshire, UK David Olson, Zoological Society of London, UK Editorial Advisors Davor Zanella, University of Zagreb, Zagreb, Croata Ms. -
Temperature-Dependent Life History and Transcriptomic
Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers Sofia Paraskevopoulou1, Alice Dennis1, Guntram Weithoff1, and Ralph Tiedemann1 1University of Potsdam May 5, 2020 Abstract A species’ response to thermal stress is an essential physiological trait that can determine occurrence and temporal succession in nature, including response to climate change. Environmental temperature affects zooplankton performance by altering life-spans and population growth rates, but the molecular mechanisms underlying these alterations are largely unknown. To compare temperature-related demography, we performed cross-temperature life-table experiments in closely related heat-tolerant and heat-sensitive Brachionus rotifer species that occur in sympatry. Within these same populations, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. We found significant cross-species and cross-temperature differences in heat response, with the heat-sensitive species adopting a strategy of high survival and low population growth, while the heat-tolerant followed an opposite strategy. Comparative transcriptomic analyses revealed both shared and opposing responses to heat. Most notably, expression of heat shock proteins (hsps) is strikingly different in the two species. In both species, hsp responses mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species’ adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories such as energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to induction of meiotic division as well as genes responsible for post-translational histone modifications. -
Evolution of Reproduction and Stress Tolerance In
EVOLUTION OF REPRODUCTION AND STRESS TOLERANCE IN BRACHIONID ROTIFERS A Dissertation Presented to The Academic Faculty by Hilary April Smith In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Biology Georgia Institute of Technology August 2012 EVOLUTION OF REPRODUCTION AND STRESS TOLERANCE IN BRACHIONID ROTIFERS Approved by: Dr. Terry W. Snell, Advisor Dr. J. Todd Streelman School of Biology School of Biology Georgia Institute of Technology Georgia Institute of Technology Dr. Mark E. Hay Dr. David B. Mark Welch School of Biology Josephine Bay Paul Center for Georgia Institute of Technology Comparative Molecular Biology and Evolution Marine Biological Laboratory Dr. Julia Kubanek Dr. Robert L. Wallace School of Biology Department of Biology Georgia Institute of Technology Ripon College Date Approved: April 30, 2012 To Ginny and Dale Smith. ACKNOWLEDGEMENTS I wish to acknowledge all those who have contributed to the production of this dissertation directly or indirectly. First, I thank my parents for their support. Second, I express gratitude to my doctoral advisor Dr. Snell, without whom this would not have been possible. I also thank members past and present of the Snell laboratory, including but not limited to Dr. Shearer, Allison Fields, Ashleigh Burns, and Kathleen White. Third, I would like to thank my committee members, Dr. Hay, Dr. Kubanek, Dr. Streelman, Dr. Mark Welch, and Dr. Wallace, for their guidance and assistance. Fourth, I acknowledge Dr. Serra and Dr. Carmona, and members of their laboratories, for hosting me at the University of Valencia and providing aid with sampling and culture work in Spain. -
Rotifera: Monogononta: Lecanidae) from China
Biologia 65/3: 512—514, 2010 Section Zoology DOI: 10.2478/s11756-010-0048-0 Description of Lecane yatseni sp. n. (Rotifera: Monogononta: Lecanidae) from China Nan Wei & Runlin Xu* School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; e-mail: xurunlin [email protected] Abstract: Lecane yatseni sp. n., collected from the littoral of an artificial lake on Qi’ao island of the Pearl River estuary, Guangdong province, south of China, is described and figured. It is closely related to one of the commonest species of the genus, Lecane luna, resembling Lecane papuana, but distinguished by the presence of inwardly curved aculeated antero- lateral spines and broad-based spine-formed projections close to the middle of the ventral head aperture margin. Key words: Rotifera; Qi’ao island; Lecane yatseni sp. n. Introduction The family’s single genus, Lecane Nitzsch, 1827, is one of the most species-rich genera of Rotifera. There are more than 200 species in the genus at present (Segers 2007). They live mainly in benthic periphytic and in- terstitial habitats, and most of them live in freshwater. About 40 of them have been found in saltwaters: 21 eu- ryhaline species, 13 haloxenous species, at least seven strictly haline species have been reported, occurring in inland saline and/or marine habitats (Fontaneto et al. 2008). More than 60 species of the genus were recorded in China up to 1997, and most of the named taxa are widely distributed or cosmopolitan, with only Lecane chinesensis (Zhuge et Koste, 1996) possibly restricted to China (Zhuge et al. -
Rotifera from Sri Lanka (Ceylon) 2
Rotifera from Sri Lanka (Ceylon) 2. Further studies on the Eurotatoria including new records Item Type article Authors Chengalath, R.; Fernando, C.H.; Koste, W. Download date 04/10/2021 13:23:19 Link to Item http://hdl.handle.net/1834/32630 Bull. Fish. Res. Stn., Sri Lanka (Ceylon), Vol. 24, Nos. 1 & 2-pp. 29-62-1973. Rotifera from Sri Lanka (Ceylon) 2 Further Studies on the Eurotatoria Including New Records by R. CHENGALATH*, C. H. FERNANDo* and W. KosTEt INTRODUCTION In the first paper of this series, Chengalath and Fernando (1973) dealt with the genus Lecane from Sri Lanka. In all, twenty five species were recorded, of which seventeen species were new records. Two new species were also described. On the present paper we deal with the rest of the Eurotatoria. Again we have found many new records. In all 79 species are described in the present paper of which 47 are new records. The present study is based on the examination of over 300 samples from 135localities including large and small tanks, ponds of various sizes, rice fields, streams and marshes. The collections cover the whole area of Sri Lanka and were taken during different seasons of the year mainly from 1968-1972. The sampling localities are given in Fig. 1. In the previous paper (Chengalath and Fernando 1973) the literature on the Sri Lanka species was reviewed. Also the literature on the Eurotatoria of South and South-East Asia was given. Therefore, we have omitted reference to this literature. The methods used in the present study were the same as those referred to in Chengalath and Fernando (1973). -
Obligate Asex in a Rotifer and the Role of Sexual Signals
doi:10.1111/j.1420-9101.2007.01437.x Obligate asex in a rotifer and the role of sexual signals C.-P. STELZER Institute for Limnology, Mondsee, Austria Keywords: Abstract aphid; Transitions to asexuality have occurred in many animals and plants, yet the Brachionus; biological mechanisms causing such transitions have often remained unclear. chemical communication; Cyclical parthenogens, such as cladocerans, rotifers or aphids often give rise to cyclical parthenogenesis; obligate asexual lineages. In many rotifers, chemical signals that accumulate Daphnia; during population crowding trigger the induction of sexual stages. In this evolution of sex; study, I tested two hypotheses on the origin of obligate parthenogenesis in the obligate parthenogenesis; rotifer Brachionus calyciflorus: (i) that obligate parthenogens have lost the sexual signals. responsiveness to the sexual signal; and (ii) that obligate parthenogens have lost the ability to produce the sexual signal. Pairwise cross-induction assays among three obligate parthenogenetic strains and two cyclically partheno- genetic (sexual) strains were used to test these hypotheses. I found that obligate parthenogens can induce sexual reproduction in sexual strains, but not vice versa. This demonstrates that obligate parthenogens do still produce the sexual signal, but have lost responsiveness to that signal. proximate causes for the origin of new asexual lineages Introduction remains a major challenge, as such causes determine the Although asexual lineages have emerged in almost all frequency of asexual transitions as well as the levels of major animal and plant groups, most of them are doomed genetic diversity within asexual populations (Simon to early extinction (Maynard Smith, 1978; Bell, 1982). et al., 2003). -
It Is Believed That to Preserve Purity of Water It Is Sufficient Not to Discharge
“Moscow is my Motherland 55 and will remain so forever: I was born there and there I suffered a lot and there I was too happy.” These are the words written by our great poet Mikhail Lermontov about the years spent in the old capital— a short but very significant period for his creative work. It is believed that to preserve purity of water 37 it is sufficient not to discharge contaminants into reservoirs in the quantities exceeding the limits of the permissible level. Studies carried on by scientists from the Moscow State University show that these priorities are insufficient for securing ecological safety of water supply sources. In the 1760s-1770s a group of scientists 75 headed by Peter Simon Pallas carried on a project unprecedented by the scale of works and involved territory—described a great number of Russian regions, including geological, mineralogical, animal and plant resources, historical, socio-economic and ethnographic peculiarities. No. 5 (203) 2014 CONTENTS According to archeological findings approximately SEARCH AND DEVELOPMENT 30-35 thous. years ago hunting Magnetohydrodynamics: From Galaxies to Problems tribes reached Arctic latitudes of Metallurgy, P. Frik .......................................................... 4 of Siberia. Extreme natural Predator As a Universal Breeder, conditions made people A. Severtsov, A. Shubkina ..............................................11 actively search for new means The Secret of the Nineteenth Layer: Listvenka Site, of procuring food. As a result Ye. Akimova ................................................................... 18 they could pay attention to wolves, who, as is well known, INTERNATIONAL COOPERATION use group driving-in hunting From the Infrared Region to Terahertzes, V. Shiryaev ......... 30 for animals. Presumably primitive man managed to domesticate TALKING POINTS the wolf, thus acquiring a reliable Quality of Water: New Criteria, S. -
Synergistic Toxicity of Macondo Crude Oil and Dispersant Corexit 9500A&Reg
Environmental Pollution 173 (2013) 5e10 Contents lists available at SciVerse ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Ò Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A to the Brachionus plicatilis species complex (Rotifera) Roberto Rico-Martínez a,*, Terry W. Snell b, Tonya L. Shearer b a Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Departamento de Química, Avenida Universidad 940, Aguascalientes, Ags., C.P. 20131, Mexico b Georgia Institute of Technology, School of Biology, Atlanta, Georgia 30332-0230, USA article info abstract Article history: Using the marine rotifer Brachionus plicatilis acute toxicity tests, we estimated the toxicity of Corexit Ò Ò Received 9 May 2012 9500A , propylene glycol, and Macondo oil. Ratios of 1:10, 1:50 and 1:130 for Corexit 9500A :Macondo Received in revised form oil mixture represent: maximum exposure concentrations, recommended ratios for deploying Corexit 17 September 2012 Ò (1:10e1:50), 1:130 the actual dispersant:oil ratio used in the Deep Water Horizon spill. Corexit 9500A Accepted 27 September 2012 Ò and oil are similar in their toxicity. However, when Corexit 9500A and oil are mixed, toxicity to B. manjavacas increases up to 52-fold. Extrapolating these results to the oil released by the Macondo Keywords: well, suggests underestimation of increased toxicity from Corexit application. We found small differences LC50 values fl Corexit in sensitivity among species of the B. plicatilis species complex, likely re ecting phylogenetic similarity. Oil pollution Just 2.6% of the water-accommodated fraction of oil inhibited rotifer cyst hatching by 50%, an ecologically Oil dispersant significant result because rotifer cyst in sediments are critical resources for the recolonization of Environmental risk assessment populations each Spring. -
A Protein Signal Triggers Sexual Reproduction in Brachionus Plicatilis (Rotifera)
Marine Biology (2006) DOI 10.1007/s00227-006-0251-2 RESEARCH ARTICLE Terry W. Snell Æ Julia Kubanek Æ William Carter Audra B. Payne Æ Jerry Kim Æ Melissa K. Hicks Claus-Peter Stelzer A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera) Received: 13 October 2005 / Accepted: 3 January 2006 Ó Springer-Verlag 2006 Abstract The defining feature of the life cycle in mo- protein isolated from human ovarian follicular fluid. nogonont rotifers such as Brachionus plicatilis (Muller) The 39 kDa protein is an excellent candidate for the is alternation of asexual and sexual reproduction (mixis). rotifer mixis induction signal. Why sex is maintained in such life cycles is an important unsolved evolutionary question and one especially amenable to experimental analysis. Mixis is induced by a Introduction chemical signal produced by the rotifers which accu- mulates to threshold levels at high population densities. Monogonont rotifers are cyclical parthenogens capable The chemical features of this signal were characterized of both asexual and sexual reproduction (Wallace and using size exclusion, enzymatic degradation, protease Snell 2001). The maintenance of sex in such life cycles protection assays, selective binding to anion ion ex- where it could readily be lost is a longstanding problem change and C3 reversed phase HPLC columns, and the in evolutionary biology. Rotifers are a powerful exper- sequence of 17 N-terminal amino acids. These studies imental system in which to investigate this problem and were carried out over two years beginning in 2003 using the dynamic interaction between asexual and sexual B. plicatilis Russian strain. When rotifer-conditioned reproduction, evolutionary forces, and the environment.