Underwater Physiology Is As Important As a Knowledge of Diving Gear and Proce- Dures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mansfield, NG18 2AD to the Editor: Dear Sir, VERTIGO in DIVERS Thank You for Asking for My Comments on Noel Roydhouse's Letter Which I Have Read with Interest
Br J Sports Med: first published as 10.1136/bjsm.17.3.210 on 1 September 1983. Downloaded from 210 CORRESPONDENCE 14 Woodhouse Road, Mansfield, NG18 2AD To the Editor: Dear Sir, VERTIGO IN DIVERS Thank you for asking for my comments on Noel Roydhouse's letter which I have read with interest. He is technically correct in stating that vertigo is not inevitable when the tympanic membrane ruptures. Vertigo is not dependent on the size of perforation that is sustained, but is dependent on the rate of ingress of cold water into the tympanic cavity. The caloric effect produced by rapid ingress of water is entirely dependent on the temperature difference between the water that has entered the tympanic cavity and body temperature. Once the water temperature reaches approximate body temperature then the caloric effect ceases as does the vertigo. As ENT surgeons we use this caloric phenomenon for testing labyrinthine function (vestibular function); and under test conditions we use water at 300C and 440C, in ears with intact tympanic membranes, in order to induce a vertigo. If an article were to be directed at "diving doctors" I think that it would be fair comment for it to be stated that a vertigo sustained on descent should be assumed to be due to a tympanic membrane rupture with rapid ingress of water, until proven otherwise, by inspection of the ear; if the tympanic membrane is found to be intact, then a diagnosis of perilymph fistula must be made, which will only be proved or disproved by performing an exploratory tympanotomy. -
Hyperbaric Physiology the Rouse Story Arrival at Recompression
Hyperbaric Physiology The Rouse Story • Oct 12, 1992, off the New Jersey coast • father/son team of experienced divers • explore submarine wreck in 230 ft (70 m) • breathing compressed air • trapped in wreck & escaped with no time for decompression Chris and Chrissy Rouse Arrival at recompression Recompression efforts facility • Both divers directly ascend to dive boat • Recompression starts about 3 hrs after • Helicopter arrives at boat in 1 hr 27 min ascent • Bronx Municipal Hospital recompression facility – put on pure O2 and compressed to 60 ft – Chris (39 yrs) pronounced dead • extreme pain as circulation returned – compressed to 165 ft, then over 5.5 hrs – Chrissy (22 yrs) gradually ascended back to 30 ft., lost • coherent and talking consciousness • paralysis from chest down • no pain – back to 60 ft. Heart failure and death • blood sample contained foam • autopsy revealed that the heart contained only foam Medical Debriefing Gas Laws • Boyle’s Law • Doctors conclusions regarding their – P1V1 = P2V2 treatment • Dalton’s Law – nothing short of recompression to extreme – total pressure is the sum of the partial pressures depths - 300 to 400 ft • Henry’s Law – saturation treatment lasting several days – the amt of gas dissolved in liquid at any temp is – complete blood transfusion proportional to it’s partial pressure and solubility – deep helium recompression 1 Scuba tank ~ 64 cf of air Gas problems during diving Henry, 1 ATM=33 ft gas (10 m) dissovled = gas Pp & tissue • Rapture of the deep (Nitrogen narcosis) solubility • Oxygen -
Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC
Environmental Extremes: Alternobaric Chapter 23 ENVIRONMENTAL EXTREMES: ALTERNOBARIC RICHARD A. SCHEURING, DO, MS*; WILLIAM RAINEY JOHNSON, MD†; GEOFFREY E. CIARLONE, PhD‡; DAVID KEYSER, PhD§; NAILI CHEN, DO, MPH, MASc¥; and FRANCIS G. O’CONNOR, MD, MPH¶ INTRODUCTION DEFINITIONS MILITARY HISTORY AND EPIDEMIOLOGY Altitude Aviation Undersea Operations MILITARY APPLIED PHYSIOLOGY Altitude Aviation Undersea Operations HUMAN PERFORMANCE OPTIMIZATION STRATEGIES FOR EXTREME ENVIRONMENTS Altitude Aviation Undersea Operations ONLINE RESOURCES FOR ALTERNOBARIC ENVIRONMENTS SUMMARY *Colonel, Medical Corps, US Army Reserve; Associate Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sci- ences, Bethesda, Maryland †Lieutenant, Medical Corps, US Navy; Undersea Medical Officer, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland ‡Lieutenant, Medical Service Corps, US Navy; Research Physiologist, Undersea Medicine Department, Naval Medical Research Center, Silver Spring, Maryland §Program Director, Traumatic Injury Research Program; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¥Colonel, Medical Corps, US Air Force; Assistant Professor, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland ¶Colonel (Retired), Medical Corps, US Army; Professor and former Department Chair, Military and Emergency Medicine, Uniformed Services University of the Health Sciences, -
Wellness Packages
WELLNESS PACKAGES WELLNESS PACKAGES MENU OF SPA EXPERIENCES & THERAPIES Discover a healing universe located at the heart of Miraggio Thermal SPA Resort, on a mineral-rich underground hot spring overlooking the magnificent Aegean Sea. Myrthia Thermal SPA is the award-winning wellness center, combining the ancient Greek art of water-healing with the benefits of its unique local water source, creating a tailored and life-changing experience. Anti-Stress Package A holistic, anti-stress package providing relief for those that feel overwhelmed by the stresses of everyday life. Some handle extra pressure in their lives by drinking or smoking more, leading to a sedentary life style or developing a reliance on anti-depressants. Stress occurs when a situation, event or thought becomes threatening, worrisome or anxiety-provoking. Although a small dose of stress can, at times, be beneficial in helping people achieve goals and meet deadlines, it can become a problem when you are constantly running in emergency mode and take a toll on your mind and body. This unique and holistic package is an effective form of stress reduction and stress management, providing physical and psychological benefits to counter the symptoms of stress and brings your nervous system back into balance. • Increases blood circulation • Releases muscle tension • Encourages the release of dopamine • Supports the central nervous system - At the end of each day program we offer fresh juice or herbal tea and green salad - This package comes in either a 3 or 5 day option and can be adjusted to your personal needs. Each day includes: WELLNESS PACKAGES WELLNESS 4 Day 1 • Personal Yoga 50' For a mind and body practice combining physical postures, breathing techniques and meditation or relaxation to enhance well-being. -
Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by Lcol a Grodecki Diving Physics Physics
Dive Medicine Aide-Memoire Lt(N) K Brett Reviewed by LCol A Grodecki Diving Physics Physics • Air ~78% N2, ~21% O2, ~0.03% CO2 Atmospheric pressure Atmospheric Pressure Absolute Pressure Hydrostatic/ gauge Pressure Hydrostatic/ Gauge Pressure Conversions • Hydrostatic/ gauge pressure (P) = • 1 bar = 101 KPa = 0.987 atm = ~1 atm for every 10 msw/33fsw ~14.5 psi • Modification needed if diving at • 10 msw = 1 bar = 0.987 atm altitude • 33.07 fsw = 1 atm = 1.013 bar • Atmospheric P (1 atm at 0msw) • Absolute P (ata)= gauge P +1 atm • Absolute P = gauge P + • °F = (9/5 x °C) +32 atmospheric P • °C= 5/9 (°F – 32) • Water virtually incompressible – density remains ~same regardless • °R (rankine) = °F + 460 **absolute depth/pressure • K (Kelvin) = °C + 273 **absolute • Density salt water 1027 kg/m3 • Density fresh water 1000kg/m3 • Calculate depth from gauge pressure you divide press by 0.1027 (salt water) or 0.10000 (fresh water) Laws & Principles • All calculations require absolute units • Henry’s Law: (K, °R, ATA) • The amount of gas that will dissolve in a liquid is almost directly proportional to • Charles’ Law V1/T1 = V2/T2 the partial press of that gas, & inversely proportional to absolute temp • Guy-Lussac’s Law P1/T1 = P2/T2 • Partial Pressure (pp) – pressure • Boyle’s Law P1V1= P2V2 contributed by a single gas in a mix • General Gas Law (P1V1)/ T1 = (P2V2)/ T2 • To determine the partial pressure of a gas at any depth, we multiply the press (ata) • Archimedes' Principle x %of that gas Henry’s Law • Any object immersed in liquid is buoyed -
Influence of a Six-Week Swimming Training with Added Respiratory
International Journal of Environmental Research and Public Health Article Influence of a Six-Week Swimming Training with Added Respiratory Dead Space on Respiratory Muscle Strength and Pulmonary Function in Recreational Swimmers Stefan Szczepan 1,* , Natalia Danek 2 , Kamil Michalik 2 , Zofia Wróblewska 3 and Krystyna Zato ´n 1 1 Department of Swimming, Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego 35, Swimming Pool, 51-612 Wroclaw, Poland; [email protected] 2 Department of Physiology and Biochemistry, Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego 35, P-3 Building, 51-612 Wroclaw, Poland; [email protected] (N.D.); [email protected] (K.M.) 3 Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Zygmunta Janiszewskiego 14a, C-11 Building, 50-372 Wroclaw, Poland; zofi[email protected] * Correspondence: [email protected]; Tel.: +48-713-473-404 Received: 5 July 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: The avoidance of respiratory muscle fatigue and its repercussions may play an important role in swimmers’ health and physical performance. Thus, the aim of this study was to investigate whether a six-week moderate-intensity swimming intervention with added respiratory dead space (ARDS) resulted in any differences in respiratory muscle variables and pulmonary function in recreational swimmers. A sample of 22 individuals (recreational swimmers) were divided into an experimental (E) and a control (C) group, observed for maximal oxygen uptake (VO2max). The intervention involved 50 min of front crawl swimming performed at 60% VO2max twice weekly for six weeks. -
Eustachian Tube Catheterization. J Otolaryngol ENT Res
Journal of Otolaryngology-ENT Research Editorial Open Access Eustachian tube catheterization Volume 3 Issue 2 - 2015 Hee-Young Kim Introduction Otorhinolaryngology, Kim ENT clinic, Republic of Korea Although Eustachian tube obstruction (ETO) as one of the principal Correspondence: Hee-Young Kim, Otorhinolaryngology, Kim causes of ‘hearing loss’, and/or ‘ear fullness’, and/or ‘tinnitus’, and/ ENT Clinic, 2nd fl. 119, Jangseungbaegi-ro, Dongjak-gu, Seoul, 06935, Republic of Korea, Tel +82-02-855-7541, or ‘headache (including otalgia)’, and/or ‘vertigo’, has already been Email recognized by many well-respected senior doctors for a long time, it has still received only scant attention both in the literature and in Received: September 02, 2015 | Published: September 14, practice.1,2 2015 Pressure differences between the middle ear and the atmosphere cause temporary conductive hearing loss by decreased motion of the tympanic membrane and ossicles of the ear.3 This point includes clue for explaining the mechanism of tinnitus due to Eustachian tube obstruction.1 Improvement of tinnitus after Eustachian tube catheterization, can mean that the tinnitus is from the hypersensitivity of cochlear nucleus following decrease of afferent nerve stimuli owing to air-bone gap.1,4 The middle ear is very much like a specialized paranasal sinus, with normal balance as maintained by the labyrinthine mechanism.7 called the tympanic cavity; it, like the paranasal sinuses, is a hollow There are many other conditions which may cause vertigo, but since mucosa-lined cavity in the skull that is ventilated through the nose.5 Eustachian tube obstruction is one of the most obvious, and also the Tympanic cavity and mastoid cavity are named on the basis of most easily corrected, every patient with symptoms of vertigo, and/or anatomy. -
What Are the Health Effects from Exposure to Carbon Monoxide?
CO Lesson 2 CARBON MONOXIDE: LESSON TWO What are the Health Effects from Exposure to Carbon Monoxide? LESSON SUMMARY Carbon monoxide (CO) is an odorless, tasteless, colorless and nonirritating Grade Level: 9 – 12 gas that is impossible to detect by an exposed person. CO is produced by the Subject(s) Addressed: incomplete combustion of carbon-based fuels, including gas, wood, oil and Science, Biology coal. Exposure to CO is the leading cause of fatal poisonings in the United Class Time: 1 Period States and many other countries. When inhaled, CO is readily absorbed from the lungs into the bloodstream, where it binds tightly to hemoglobin in the Inquiry Category: Guided place of oxygen. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of the physiological mechanisms underlying CO toxicity. For specific learning and standards addressed, please see pages 30 and 31. MATERIALS INCORPORATION OF TECHNOLOGY Computer and/or projector with video capabilities INDIAN EDUCATION FOR ALL Fires utilizing carbon-based fuels, such as wood, produce carbon monoxide as a dangerous byproduct when the combustion is incomplete. Fire was important for the survival of early Native American tribes. The traditional teepees were well designed with sophisticated airflow patterns, enabling fires to be contained within the shelter while minimizing carbon monoxide exposure. However, fire was used for purposes other than just heat and cooking. According to the historian Henry Lewis, Native Americans used fire to aid in hunting, crop management, insect collection, warfare and many other activities. Today, fire is used to heat rocks used in sweat lodges. -
THE 6 MAJOR BODY SYSTEMS and How They Interact with Each Other to Keep the “Body Machine” Alive and Working Well
THE 6 MAJOR BODY SYSTEMS And how they interact with each other to keep the “body machine” alive and working well. CIRCULATORY SYSTEM / CARDIOVASCULAR SYSTEM PRIMARY PURPOSE: transport blood throughout the body by circulating PRIMARY ORGANS/PARTS: Heart, blood vessels (arteries, veins, capillaries) (1) Transports/carries nutrients and oxygen through the blood to most parts of the body (2) Transports/carries waste in cells and carbon-dioxide (CO2) away from the parts: (a) Cell waste goes to the kidneys for filter and disposal (b) Carbon-dioxide (CO2) goes to the lungs to exhale (breathe out) Kidneys and Lungs have a close relationship with Cardiovascular system Kidneys: filter through blood to take out the waste and get it eventually out of the body Lungs: breathes in oxygen and gives it to the blood for Circulatory system to carry throughout the body; and takes unneeded carbon-dioxide (CO2) from the blood and breathes that out. Circulatory/Cardiovascular System through the blood to most parts of the body provides nutrients and oxygen which is needed for our bodies to have ENERGY! RESPIRATORY SYSTEM PRIMARY PURPOSE: Breathing - taking in Oxygen, pushing out Carbon-Dioxide (CO2) PRIMARY ORGANS: Lungs, trachea (tube going from lungs to nose/mouth) (1) Inhales (breathes in) Oxygen - good for the body - gives it to the Circulatory System to be transported throughout the body through the blood. (2) Exhales (breathes out) Carbon-Dioxide (CO2) - lungs get this gas from the blood (Circ. Sys.) and pushes it out of the body DIGESTIVE SYSTEM PRIMARY PURPOSE: take in food; break down food into nutrients (good) and waste (unneeded) PRIMARY ORGANS: Stomach, large and small intestines, esophagus (tube from stomach to mouth) (1) Digestive System gets nutrients (good) from food and hands it over to the blood and Circulatory System then carries those nutrients where they need to go. -
Overview of the Circulatory System Fill in the Blank
Overview Of The Circulatory System Fill In The Blank If orthotropic or rheumatoid Bernardo usually Germanising his erotica euphemize contractually or expect centrally and Malaprop, how pessimum is Tore? Obcordate Darius hale meltingly. Liberating and aerobatic Marco vandalise, but Lynn quickly unlives her margins. LESSON 1. Bio 104 Chapters 17 20 Cardiovascular System 33. Short-Answer Questions About Circulatory and Lymphatic System Infections. Circulatory system the concept to blood pressure and available and flake the currency of William Harvey II Overview the Concept Objectives The student will 1. Cardiovascular System Higher Education Pearson. Outline The Digestive System develop your textbook to one you clock in the blanks Where do. As the pulmonary circulation at the remaining circles from each blank to fill the in humans and cocaine affect the pulmonary vein in. Circulatory and Lymphatic System Infections GALILEO Open. The vascular diseases that red blood comes with their amazing heart failure occurs most of ingested food pieces of circulatory system, resulting pattern of the. 7 Circulatory System Diseases Symptoms Risks and More. For each definition given below fill date the inmate with the crate part that completes the term. The respiratory system access in blanks worksheet answers human digestive. FREE Circulatory System Activities and Classroom Resources Teacher Planet. Blood and Circulation Webquest Gates Chili. Then to pass through the systemic artery is vital for developing this system circulatory system is blood pressure, where they extend like you can adjust their understanding its chambers. Blood cannot flow diagrams a particular part in the circulatory system blank to. There are separated by which vitamins, fill the vessels that makes cells found, body and describing the. -
Calculation of Dead Space - Relevance in Critical Care
CALCULATION OF DEAD SPACE - RELEVANCE IN CRITICAL CARE Kodati Rakesh Dead space • Dead space calculation • CO2 measurement • Effect of mechanical ventilation • ARDS • Recruitment & proning • Pulmonary embolism • Weaning DEAD SPACE CALCULATION Dead space • Volume of the airways and lungs that does not participate in gas exchange • Anatomical dead space – Volume of conducting airways – Upper airways, larynx, trachea, bronchi and bronchioles – Does not include respiratory bronchioles and alveoli • Physiologic dead space (VDphys) – Total volume of the lungs that does not participate in gas exchange – Includes anatomic dead space plus a functional dead space in the alveoli Dead space Dead space Difference b/w expected & actual composition of the effluent media Basis for calculating dead space and shunt Dead space Rileys 3 compartment model Alveoli groups according to V/Q ratios A – normal perfusion, no ventilation (shunt V/Q of 0) B – normal perfusion & ventilation (shunt V/Q of 1) C – normal ventilation, no perfusion (shunt V/Q of infinity) Physiological dead space (VD phys) Airway dead space (VD aw) Alveolar dead space (VD alv) Riley RL et al, J App Physiol 1949 Dead space Bohrs dead space • Danish physiologist Christian Bohr in 1891 • Mass balance calculation dilution of the expired gas by the inspiratory gas filling the conductive airways FACO2 - mean alveolar CO2 concentration sample of gas collected late in exhalation FECO2 fractional CO2 concentration in the total mixed exhaled breath H. Thomas Robertson, Eur Respir J 2015; 45 Tusman G et al, Anesth Analg 2012 Bohrs dead space • Fractions or partial pressures of CO2 are used interchangeably • FACO2 is the mean value of CO2 within the alveolar compartment • FE CO2 is calculated using formula VCO2/VT x (Pb – PH2O) H. -
Dead Space and CO2 Elimination Related to Pattern of Inspiratory Gas
Aboab et al. Critical Care 2012, 16:R39 http://ccforum.com/content/16/2/R39 RESEARCH Open Access Dead space and CO2 elimination related to pattern of inspiratory gas delivery in ARDS patients Jerome Aboab1, Lisbet Niklason2, Leif Uttman2, Laurent Brochard1,3 and Björn Jonson1,2* Abstract Introduction: The inspiratory flow pattern influences CO2 elimination by affecting the time the tidal volume remains resident in alveoli. This time is expressed in terms of mean distribution time (MDT), which is the time available for distribution and diffusion of inspired tidal gas within resident alveolar gas. In healthy and sick pigs, abrupt cessation of inspiratory flow (that is, high end-inspiratory flow (EIF)), enhances CO2 elimination. The objective was to test the hypothesis that effects of inspiratory gas delivery pattern on CO2 exchange can be comprehensively described from the effects of MDT and EIF in patients with acute respiratory distress syndrome (ARDS). Methods: In a medical intensive care unit of a university hospital, ARDS patients were studied during sequences of breaths with varying inspiratory flow patterns. Patients were ventilated with a computer-controlled ventilator allowing single breaths to be modified with respect to durations of inspiratory flow and postinspiratory pause (TP), as well as the shape of the inspiratory flow wave. From the single-breath test for CO2, the volume of CO2 eliminated by each tidal breath was derived. Results: A long MDT, caused primarily by a long TP, led to importantly enhanced CO2 elimination. So did a high EIF. Effects of MDT and EIF were comprehensively described with a simple equation.