Miktoniscus Medcofi (Isopoda, Trichoniscidae) in Texas: a Range Extension for the Genus and Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biochemical Systematics and Evolutionary Relationships in the Trichoniscus Pusillus Complex (Crustacea, Isopoda, Oniscidea)
Heredity 79 (1997) 463—472 Received 20 August 1996 Biochemical systematics and evolutionary relationships in the Trichoniscus pusillus complex (Crustacea, Isopoda, Oniscidea) MARINA COBOLLI SBORDONI1, VALERIO KETMAIERff, ELVIRA DE MATTHAEIS & STEFANO TAITI Dipartimento di Scienze Ambienta/i, Università di L 'Aquila, V. Vetoio, Local/ta Coppito-67010-L 'Aqu/la, Dipartimento di Biologia An/male e dell'Uomo, Università di Roma La Sap/enza', V./e de/I'Univers/tà 32- 00185-Rome and §Centro di Studio per/a Faunistica ed Eco/ogia Tropicali CNR, V.Romana 17-50125- Florence, Italy Inorder to clarify taxonomic and phylogenetic relationships among Trichoniscus pusillus (Isopoda, Oniscidea) populations, allozyme variation was studied by means of starch gel electrophoresis. The genetic structure of several populations belonging to different subspecies (diploid bisexual, triploid parthenogenetic; epigean, troglophilic and troglobitic) was assessed by investigating 10 enzymatic systems corresponding to 15 putative loci. F-statistics and cluster- ing analysis indicated a high degree of genetic differentiation, corresponding to low levels of gene flow among populations, both epigean and hypogean, still considered to be conspecific. Estimates of divergence times calculated from genetic distance data suggest that the pattern of differentiation and the colonization of cave environments may be related to the palaeoclimatic change of the Messinian and PIio—Pleistocene glaciations. Keywords: allozymes, cave fauna, divergencetimes, genetic polymorphism, phylogeny, Tricho- niscus pusillus. Introduction accepted, is arbitrary and subjective. Thorpe (1987) stressed that most species in natural circumstances Trichoniscuspusillus Brandt, 1833 (Isopoda, Onisci- may have patterns of geographical variation. As dea) is considered to be a polytypic species, widely conventional subspecies are not natural categories, distributed in the Palaearctic region, whose popula- tions have been arranged in several subspecies. -
Woodlice in Britain and Ireland: Distribution and Habitat Is out of Date Very Quickly, and That They Will Soon Be Writing the Second Edition
• • • • • • I att,AZ /• •• 21 - • '11 n4I3 - • v., -hi / NT I- r Arty 1 4' I, • • I • A • • • Printed in Great Britain by Lavenham Press NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS ISBN 0 904282 85 6 COVER ILLUSTRATIONS Top left: Armadillidium depressum Top right: Philoscia muscorum Bottom left: Androniscus dentiger Bottom right: Porcellio scaber (2 colour forms) The photographs are reproduced by kind permission of R E Jones/Frank Lane The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to, and draws upon, the collective knowledge of the 13 sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. One quarter of ITE's work is research commissioned by customers, such as the Department of Environment, the European Economic Community, the Nature Conservancy Council and the Overseas Development Administration. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organizations in overseas projects and programmes of research. -
Lack of Taxonomic Differentiation in An
ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2005) xxx–xxx www.elsevier.com/locate/ympev Lack of taxonomic diVerentiation in an apparently widespread freshwater isopod morphotype (Phreatoicidea: Mesamphisopidae: Mesamphisopus) from South Africa Gavin Gouws a,¤, Barbara A. Stewart b, Conrad A. Matthee a a Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa b Centre of Excellence in Natural Resource Management, University of Western Australia, 444 Albany Highway, Albany, WA 6330, Australia Received 20 December 2004; revised 2 June 2005; accepted 2 June 2005 Abstract The unambiguous identiWcation of phreatoicidean isopods occurring in the mountainous southwestern region of South Africa is problematic, as the most recent key is based on morphological characters showing continuous variation among two species: Mesam- phisopus abbreviatus and M. depressus. This study uses variation at 12 allozyme loci, phylogenetic analyses of 600 bp of a COI (cyto- chrome c oxidase subunit I) mtDNA fragment and morphometric comparisons to determine whether 15 populations are conspeciWc, and, if not, to elucidate their evolutionary relationships. Molecular evidence suggested that the most easterly population, collected from the Tsitsikamma Forest, was representative of a yet undescribed species. Patterns of diVerentiation and evolutionary relation- ships among the remaining populations were unrelated to geographic proximity or drainage system. Patterns of isolation by distance were also absent. An apparent disparity among the extent of genetic diVerentiation was also revealed by the two molecular marker sets. Mitochondrial sequence divergences among individuals were comparable to currently recognized intraspeciWc divergences. Sur- prisingly, nuclear markers revealed more extensive diVerentiation, more characteristic of interspeciWc divergences. -
Slime Molds: Biology and Diversity
Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances -
Desktop Biodiversity Report
Desktop Biodiversity Report Land at Balcombe Parish ESD/14/747 Prepared for Katherine Daniel (Balcombe Parish Council) 13th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Balcombe Parish 13/02/2014 Prepared for Katherine Daniel Balcombe Parish Council ESD/14/74 The following information is included in this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI M12 - Sedgy & Scott's Gills; M22 - Balcombe Lake & associated woodlands; M35 - Balcombe Marsh; M39 - Balcombe Estate Rocks; M40 - Ardingly Reservior & Loder Valley Nature Reserve; M42 - Rowhill & Station Pastures. SSSI Worth Forest. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; National Trust Property. Habitats Ancient tree; Ancient woodland; Ghyll woodland; Lowland calcareous grassland; Lowland fen; Lowland heathland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry. -
Role of Arthropods in Maintaining Soil Fertility
Agriculture 2013, 3, 629-659; doi:10.3390/agriculture3040629 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review Role of Arthropods in Maintaining Soil Fertility Thomas W. Culliney Plant Epidemiology and Risk Analysis Laboratory, Plant Protection and Quarantine, Center for Plant Health Science and Technology, USDA-APHIS, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606, USA; E-Mail: [email protected]; Tel.: +1-919-855-7506; Fax: +1-919-855-7595 Received: 6 August 2013; in revised form: 31 August 2013 / Accepted: 3 September 2013 / Published: 25 September 2013 Abstract: In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites). The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. -
Malacostraca, Isopoda, Oniscidea) of Nature Reserves in Poland
B ALTIC COASTAL ZONE Vol. 24 pp. 65–71 2020 ISSN 2083-5485 © Copyright by Institute of Modern Languages of the Pomeranian University in Słupsk Received: 7/04/2021 Original research paper Accepted: 26/05/2021 NEW INFORMATION ON THE WOODLOUSE FAUNA (MALACOSTRACA, ISOPODA, ONISCIDEA) OF NATURE RESERVES IN POLAND Artsiom M. Ostrovsky1, Oleg R. Aleksandrowicz2 1 Gomel State Medical University, Belarus e-mail: [email protected] 2 Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland e-mail: [email protected] Abstract This is the fi rst study on the woodlouse fauna of from 5 nature reserves in the Mazowian Lowland (Bukowiec Jabłonowski, Mosty Kalińskie, Łosiowe Błota, Jezioro Kiełpińskie, Klimonty) and from 2 nature reserves in the Pomeranian Lake District (Ustronie, Dolina Huczka) are presented. A total of 8 species of woodlice were found. The number of collected species ranged from 1 (Dolina Chuczka, Mosty Kalińskie, Klimonty) to 5 (Łosiowe Błota). The most common species in the all studied reserves was Trachelipus rathkii. Key words: woodlouse fauna, nature reserves, Poland, Isopoda, species INTRODUCTION Woodlice are key organisms for nutrient cycling in many terrestrial ecosystems; how- ever, knowledge on this invertebrate group is limited as for other soil fauna taxa. By 2004, the world’s woodlouse fauna (Isopoda, Oniscidea) included 3637 valid species (Schmalfuss 2003). The fauna of terrestrial isopods in Europe has been active studied since the beginning of the XX century and is now well studied (Jeff ery et al. 2010). In Poland 37 isopod species inhabiting terrestrial habitats have been recorded so far, including 12 in Mazovia and 16 in Pomerania (Jędryczkowski 1979, 1981, Razowski 1997, Piksa and Farkas 2007, Astrouski and Aleksandrowicz 2018). -
Woodlouse Diversity on Some Clyde Estuary Islands
The Glasgow Naturalist (online 2019) Volume 27, Part 1 (Trichoniscus pusillus agg.), and the ant woodlouse (Platyarthrus hoffmannseggii). The low overlap with Woodlouse diversity on some Clyde this study speaks to the impressive diversity of woodlice Estuary islands within a small geographical area thanks to their variety of lifestyles and low dispersal ranges. C.S. Boyle & G.D. Ruxton1 The common pill woodlouse was previously reported on School of Biology, University of St. Andrews, St. Bute by Collis & Collis (2008). Andrews, Fife KY16 9TH Previous surveys on Bute in 1999 and 2003 (Collis & 1E-mail: [email protected] Collis 2004), did not find the common pill woodlouse but did report the other species we found plus the common pygmy woodlouse, rosy woodlouse, Woodlice (Isopoda: Oniscidea) are ubiquitous in Haplophthalmus mengii (sensu lato), T. pygmaeus, and terrestrial habitats, and over 30 species are native or Cylisticus convexus. Had we surveyed in a more targeted naturalised in the U.K. Throughout the summer of 2017 fashion at a damper time of year, we would have C.S.B. opportunistically searched extensively around expected to find some pygmy species: T. pusillus agg. the islands of Arran, Bute and (with the owner’s and T. pygmaeus on at least the larger two islands, and permission) Pladda for woodlice. perhaps T. saeroeensis, which has been found on the nearby mainland coast. At 432 km2 Arran is the largest island in the Firth of Clyde, with a resident human population of around That tiny Pladda can support three (albeit common) 4,600. Pladda is a very small (0.11 km2) island 1 km to species of woodlice speaks for their exceptional the south of Arran. -
Terrestrial Isopoda of Arkansas David Causey
Journal of the Arkansas Academy of Science Volume 5 Article 7 1952 Terrestrial Isopoda of Arkansas David Causey Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Causey, David (1952) "Terrestrial Isopoda of Arkansas," Journal of the Arkansas Academy of Science: Vol. 5 , Article 7. Available at: http://scholarworks.uark.edu/jaas/vol5/iss1/7 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. ' Journal of the Arkansas Academy of Science, Vol. 5 [1952], Art. 7 THE TERRESTRIAL ISOPODA OF ARKANSAS* DAVID CAUSEY University of Arkansas 1. Introduction The Isopoda are an interesting and readily available example of one division of the higher Crustacea. After the caridoid facies became established in the early Malacostraca, two divergent trends arose. In the Eucarida, e.g., the shrimp, crawfish, and crab, the trend included the elaboration of the carapace into a myriad pattern of forms, sculpturing, and coloring, along with the empha- sis on stalked eyes and the carrying of the eggs by the female on her abdominal appendages. -
The Role of Urban Forest Patches in Maintaining Isopod Diversity (Oniscidea)
A peer-reviewed open-access journal ZooKeys 801: 371–388The (2018)role of urban forest patches in maintaining isopod diversity( Oniscidea) 371 doi: 10.3897/zookeys.801.22829 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The role of urban forest patches in maintaining isopod diversity (Oniscidea) Elisabeth Hornung1, Andrea Kásler1, Zsolt Tóth1 1 Department of Ecology, Institute for Biology, University of Veterinary Medicine Budapest, H-1077 Budapest, Rottenbiller str. 50, Hungary Corresponding author: Elisabeth Hornung ([email protected]) Academic editor: S. Taiti | Received 7 December 2017 | Accepted 26 March 2018 | Published 3 December 2018 http://zoobank.org/314D5EEF-E656-4D6C-AF2F-66938AC229C8 Citation: Hornung E, Kásler A, Tóth Z (2018) The role of urban forest patches in maintaining isopod diversity (Oniscidea). In: Hornung E, Taiti S, Szlavecz K (Eds) Isopods in a Changing World. ZooKeys 801: 371–388. https:// doi.org/10.3897/zookeys.801.22829 Abstract Compositional changes in natural communities associated with anthropogenic influence often lead to lo- calised extinctions and biodiversity loss. Soil invertebrates are also threatened by urbanisation due to habitat fragmentation, vegetation changes and management, soil alteration, degradation, and disappearing shelter sites. The aim was to assess terrestrial isopod (Oniscidea) assemblages in differently degraded urban forest patches of a metropolitan area (Budapest, Hungary). Study sites were compared by their species richness, composition and the relevant background factors (soil properties, dead wood, litter characteristics, and canopy closure). The degree of urban disturbance was expressed using an urbanisation index (UI) based on built-up density and vegetation cover. The isopods were identified to species level, and were qualified by their habitat preference and naturalness index (TINI). -
Arthropod Phylogeny Based on Eight Molecular Loci and Morphology
letters to nature melanogaster (U37541), mosquito Anopheles quadrimaculatus (L04272), mosquito arthropods revealed by the expression pattern of Hox genes in a spider. Proc. Natl Acad. Sci. USA 95, Anopheles gambiae (L20934), med¯y Ceratitis capitata (CCA242872), Cochliomyia homi- 10665±10670 (1998). nivorax (AF260826), locust Locusta migratoria (X80245), honey bee Apis mellifera 24. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTALW: Improving the sensitivity of progressive (L06178), brine shrimp Artemia franciscana (X69067), water ¯ea Daphnia pulex multiple sequence alignment through sequence weighting, position-speci®c gap penalties and weight (AF117817), shrimp Penaeus monodon (AF217843), hermit crab Pagurus longicarpus matrix choice. Nucleic Acids Res. 22, 4673±4680 (1994). (AF150756), horseshoe crab Limulus polyphemus (AF216203), tick Ixodes hexagonus 25. Foster, P. G. & Hickey, D. A. Compositional bias may affect both DNA-based and protein-based (AF081828), tick Rhipicephalus sanguineus (AF081829). For outgroup comparison, phylogenetic reconstructions. J. Mol. Evol. 48, 284±290 (1999). sequences were retrieved for the annelid Lumbricus terrestris (U24570), the mollusc 26. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic Katharina tunicata (U09810), the nematodes Caenorhabditis elegans (X54252), Ascaris analysis. Mol. Biol. Evol. 17, 540±552 (2000). suum (X54253), Trichinella spiralis (AF293969) and Onchocerca volvulus (AF015193), and 27. Muse, S. V. & Kosakovsky Pond, S. L. Hy-Phy 0.7 b (North Carolina State Univ., Raleigh, 2000). the vertebrate species Homo sapiens (J01415) and Xenopus laevis (M10217). Additional 28. Strimmer, K. & von Haeseler, A. Quartet puzzlingÐa quartet maximum-likelihood method for sequences were analysed for gene arrangements: Boophilus microplus (AF110613), Euhadra reconstructing tree topologies. -
Annotated Checklist of the Isopoda (Subphylum Crustacea: Class Malacostraca) of Arkansas and Oklahoma, with Emphasis Upon Subterranean Habitats
1 Annotated Checklist of the Isopoda (Subphylum Crustacea: Class Malacostraca) of Arkansas and Oklahoma, with Emphasis Upon Subterranean Habitats G. O. Graening Department of Biological Sciences, California State University at Sacramento, Sacramento, CA 95819 Michael E. Slay Arkansas Field Office, The Nature Conservancy, 601 North University Avenue, Little Rock, AR 72205 Danté B. Fenolio Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33124 Henry W. Robison Department of Biology, Southern Arkansas University, Magnolia, AR 71754 All known records of isopod crustaceans (Order Isopoda) in the states of Arkansas and Oklahoma are summarized, including new state, county, and site records. This updated checklist recognizes 47 taxa in 9 families: 2 taxa in Armadillidiidae; 1 in Armadillidae; 30 in Asellidae; 1 in Cylisticidae; 1 in Ligiidae; 1 in Oniscidae; 4 in Porcellionidae; 1 in Trachelipodidae; and 6 in Trichoniscidae. This faunal inventory includes 17 taxa that are subterranean obligates (troglobites or stygobites), and 14 taxa that are endemic to this geographical region. Current distributions and conservation statuses are summarized, and new rarity rankings are suggested. © 2007 Oklahoma Academy of Science INTRODUCTION these two states are closely associated with subterranean habitats, and those species This study assembles the first checklist restricted to hypogean habitats are typically of the entire Order Isopoda (Subphylum troglomorphic (i.e., exhibiting loss of pig- Crustacea: Class Malacostraca)