Different Classes of Antidepressants Inhibit the Rat Α7 Nicotinic Acetylcholine Receptor by Interacting Within the Ion Channel: a Functional and Structural Study

Total Page:16

File Type:pdf, Size:1020Kb

Different Classes of Antidepressants Inhibit the Rat Α7 Nicotinic Acetylcholine Receptor by Interacting Within the Ion Channel: a Functional and Structural Study molecules Article Different Classes of Antidepressants Inhibit the Rat α7 Nicotinic Acetylcholine Receptor by Interacting within the Ion Channel: A Functional and Structural Study Yorley Duarte 1,2, Maximiliano Rojas 1, Jonathan Canan 1, Edwin G. Pérez 3, Fernando González-Nilo 1,2 and Jesús García-Colunga 4,* 1 Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; [email protected] (Y.D.); [email protected] (M.R.); [email protected] (J.C.); [email protected] (F.G.-N.) 2 Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile 3 Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; [email protected] 4 Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico * Correspondence: [email protected]; Tel.: +52-442-238-1063 Abstract: Several antidepressants inhibit nicotinic acetylcholine receptors (nAChRs) in a non- competitive and voltage-dependent fashion. Here, we asked whether antidepressants with a different structure and pharmacological profile modulate the rat α7 nAChR through a similar mechanism by Citation: Duarte, Y.; Rojas, M.; interacting within the ion-channel. We applied electrophysiological (recording of the ion current Canan, J.; Pérez, E.G.; González-Nilo, elicited by choline, ICh, which activates α7 nAChRs from rat CA1 hippocampal interneurons) and in F.; García-Colunga, J. Different silico approaches (homology modeling of the rat α7 nAChR, molecular docking, molecular dynamics Classes of Antidepressants Inhibit the simulations, and binding free energy calculations). The antidepressants inhibited I with the order: Rat α7 Nicotinic Acetylcholine Ch norfluoxetine ~ mirtazapine ~ imipramine < bupropion ~ fluoxetine ~ venlafaxine ~ escitalopram. Receptor by Interacting within the Ion Channel: A Functional and The constructed homology model of the rat α7 nAChR resulted in the extracellular vestibule and Structural Study. Molecules 2021, 26, the channel pore is highly negatively charged, which facilitates the permeation of cations and the 998. https://doi.org/10.3390/ entrance of the protonated form of antidepressants. Molecular docking and molecular dynamics molecules26040998 simulations were carried out within the ion−channel of the α7 nAChR, revealing that the antide- pressants adopt poses along the receptor channel, with slightly different binding-free energy values. Academic Editor: Clelia Dallanoce Furthermore, the inhibition of ICh and free energy values for each antidepressant-receptor complex were highly correlated. Thus, the α7 nAChR is negatively modulated by a variety of antidepressants Received: 19 January 2021 interacting in the ion−channel. Accepted: 11 February 2021 Published: 13 February 2021 Keywords: α7 nicotinic acetylcholine receptors; biological activity; hippocampus; antidepressants; in silico studies; allosteric modulators Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction Cholinergic pathway dysfunctions have been associated with pathologies, such as Alzheimer’s disease, addiction, depressive disorders, and schizophrenia, among others [1–4]. With regard to depressive disorders, hyperactivation of the cholinergic pathway by nicotinic Copyright: © 2021 by the authors. acetylcholine receptor (nAChR) agonists or acetylcholinesterase inhibitors brings forward Licensee MDPI, Basel, Switzerland. depression in patients, even in adolescents [5–8]. This article is an open access article α α β β distributed under the terms and nAChRs are pentameric proteins made up of the combination of 2– 10 and 2– 4 conditions of the Creative Commons subunits, or forming homomeric receptors with a single subunit. nAChRs are non-selective + + 2+ Attribution (CC BY) license (https:// cation channels permeable to Na ,K , and Ca . The α4β2 and α7 nAChRs are the most creativecommons.org/licenses/by/ abundant subtypes in the brain [9]. Although no model is available for the complete rat α7 4.0/). nAChR, the X-ray structure of the human α4β2 nAChR has been obtained recently, as well Molecules 2021, 26, 998. https://doi.org/10.3390/molecules26040998 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 15 Molecules 2021, 26, 998 rat α7 nAChR, the X-ray structure of the human α4β2 nAChR has been obtained recently,2 of 15 as well as homology models developed for the human α7 nAChR using protein structures with high sequence identity with this receptor as templates [10,11]. as homologynAChRs models are regulated developed by a forwide the variety human ofα substances,7 nAChR using including protein antidepressants. structures with In highthis sequenceregard, a identitycommon with effect this of receptor several asantidepressants templates [10, 11with]. different pharmacological profilesnAChRs (including are regulated tricyclic by antidepressants, a wide variety ofserotonin substances,-specific including reuptake antidepressants. inhibitors, and In thisatypical regard, antidepressants) a common effect is a of non several-competitive antidepressants and voltage with-dependent different pharmacologicalinhibition of nA- profilesChRs, consistent (including with tricyclic molecular antidepressants, simulations, serotonin-specific where the antidepressant reuptake- inhibitors,nAChR interac- and atypicaltion takes antidepressants) place within the is aion non-competitive channel (i.e., the and domain voltage-dependent formed by the inhibition M2 transmembrane of nAChRs, consistentsegment of with each molecular subunit) simulations,[12–18]. Furthermore, where the metabolites antidepressant-nAChR of some antidepressants interaction takes, such placeas norfluoxetine within the ion (the channel main (i.e.,metabolite the domain of fluoxetine), formed by the(R, M2S)-dehydronorketamine transmembrane segment, and of(R each,S)-norketamine subunit) [12 (ketamine–18]. Furthermore, metabolites) metabolites inhibit muscle of some and/or antidepressants, neuronal suchnAChRs as norfluoxetine[16,19]. (the main metabolite of fluoxetine), (R,S)-dehydronorketamine, and (R,S)- norketamineIt is well (ketamine documented metabolites) that the inhibitα7 nAChR muscle is a and/or target of neuronal multiple nAChRs substances [16,19 that]. in- cludeIt isselective well documented antagonists that (methyllycaconitine), the α7 nAChR is a target allosteric of multiple modulators, substances and thatanti- includedepres- selectivesants, thereby antagonists, regulating (methyllycaconitine), depressive-like behavior allosteric in modulators, different murine and anti-depressants, models [20–23]. thereby,Furthermore, regulating it is depressive-likeknown that the behavior α7 nAChR in differentis highly murine expressed models in the [20 –hippocampus,23]. Further- more,which it is is associated known that with the depression,α7 nAChR isand highly that expressedcholinergic in signaling the hippocampus, is increased which during is associatedthis condition with [6,23 depression,]. It is well and established that cholinergic over a signalinglong period is increasedof time that during the α7 this nAChR condi- is tiona target [6,23 ].of Itfluoxetine is well established, which inhibits over a longthe functioning period of time of thatthis thereceptorα7 nAChR [24]. Additionally, is a target of fluoxetine,imipramine, which bupropion, inhibits theand functioning mirtazapine of thisalso receptorinhibit rat [24 ].and/or Additionally, human imipramine,α7 nAChRs bupropion,[12,15,17], restoring and mirtazapine the cholinergic also inhibit signaling, rat and/or which human is inα agreement7 nAChRs [with12,15 the,17 ],cholinergic restoring thehypothesis cholinergic of depression signaling, which[18]. Although is in agreement several withclasses the of cholinergic antidepressants hypothesis have ofbeen depres- stud- sionied with [18]. in Although silico methods several on classes different of antidepressants nAChR subtypes have to beensupport studied the existing with in experi- silico methodsmental results on different [25], currently nAChR subtypesnone of the to antidepressants support the existing included experimental here have results been previ- [25], currentlyously studied none on of thethe antidepressantsrat α7 nAChR with included both herefunctional have been and previouslyhigh-resolution studied stru onctural the ratapproaches.α7 nAChR with both functional and high-resolution structural approaches. Thus,Thus, thethe aimsaims ofof this this work work were were (a) (a) to to study study functional functional inhibitory inhibitory effects effects of of several several antidepressantsantidepressants with with different different chemical chemical structures structures and and pharmacological pharmacological profiles profiles (Figure (Figure1) on1) raton rat hippocampal hippocampalα7 α nAChRs,7 nAChRs, (b) (b) to to build build a 3Da 3D structural structural model model of of the the rat ratα α77 nAChR nAChR byby homologyhomology modeling,modeling, and ( (c)c) to to correlate correlate both both functional functional (electrophysiological) (electrophysiological) and and in insilico silico approaches approaches (molecular (molecular docking docking and and
Recommended publications
  • Investigation of the Cardiac Effects of Pancuronium, Rocuronium, Vecuronium, and Mivacurium on the Isolated Rat Atrium
    Current Therapeutic Research VOLUME ,NUMBER ,OCTOBER Investigation of the Cardiac Effects of Pancuronium, Rocuronium, Vecuronium, and Mivacurium on the Isolated Rat Atrium Sinan Gursoy, MD1; Ihsan Bagcivan, MD2; Nedim Durmus, MD3; Kenan Kaygusuz, MD1; Iclal Ozdemir Kol, MD1; Cevdet Duger, MD1; Sahin Yildirim, MD2; and Caner Mimaroglu, MD1 1Department of Anesthesiology, Cumhuriyet University School of Medicine, Sivas, Turkey; 2Department of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey; and 3Ministry of Health of Turkey, General Directorate of Pharmacy and Pharmaceuticals, Ankara, Turkey ABSTRACT Background: Pancuronium, vecuronium, rocuronium, and mivacurium are nondepolarizing neuromuscular blocking agents that affect the cardiovascular system with different potencies. Their cardiovascular effects are clinically significant in the anesthetic management of patients, particularly those undergoing cardiac surgery. Objective: We aimed to compare the cardiac effects of these compounds, such as heart rate and developed force, in one species under identical experimental conditions in isolated rat atria. Methods: The left or right atria of rats were removed and suspended in organ baths. Pancuronium, vecuronium, rocuronium, or mivacurium were added cumula- tively (10–9–10–5 M) in the presence and absence of the nonselective ␤-blocker propranolol (10–8 M) and the noradrenaline reuptake inhibitor desipramine (10–7 M), and heart rate changes were recorded in spontaneously beating right atria. Left atrial preparations were stimulated by electrical field stimulation using a bipolar platinum electrode, and the effects of cumulative concentrations of these nondepolarizing neuromuscular blocking agents on the developed force in the presence and absence of propranolol (10–8 M) and desipramine (10–7 M) were recorded. Results: Pancuronium increased heart rate in a dose-dependent manner com- pared with the control group (P Ͻ 0.027).
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Additional Antidepressant Pharmacotherapies According to A
    orders & is T D h e n r Werner and Coveñas, Brain Disord Ther 2016, 5:1 i a a p r y B Brain Disorders & Therapy DOI: 10.4172/2168-975X.1000203 ISSN: 2168-975X Review Article Open Access Additional Antidepressant Pharmacotherapies According to a Neural Network Felix-Martin Werner1, 2* and Rafael Coveñas2 1Higher Vocational School of Elderly Care and Occupational Therapy, Euro Academy, Pößneck, Germany 2Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain Abstract Major depression, a frequent psychiatric disease, is associated with neurotransmitter alterations in the midbrain, hypothalamus and hippocampus. Deficiency of postsynaptic excitatory neurotransmitters such as dopamine, noradrenaline and serotonin and a surplus of presynaptic inhibitory neurotransmitters such as GABA and glutamate (mainly a postsynaptic excitatory and partly a presynaptic inhibitory neurotransmitter), can be found in the involved brain regions. However, neuropeptide alterations (galanin, neuropeptide Y, substance P) also play an important role in its pathogenesis. A neural network is described, including the alterations of neuroactive substances at specific subreceptors. Currently, major depression is treated with monoamine reuptake inhibitors. An additional therapeutic option could be the administration of antagonists of presynaptic inhibitory neurotransmitters or the administration of agonists/antagonists of neuropeptides. Keywords: Acetylcholine; Bupropion; Dopamine; GABA; Galanin; in major depression and to point out the coherence between single Glutamate; Hippocampus; Hhypothalamus; Major depression; neuroactive substances and their corresponding subreceptors. A Midbrain; Neural network; Neuropeptide Y; Noradrenaline; Serotonin; question should be answered, whether a multimodal pharmacotherapy Substance P with an agonistic or antagonistic effect at several subreceptors is higher than the current conventional antidepressant treatment.
    [Show full text]
  • Current P SYCHIATRY
    Current p SYCHIATRY N ew Investigators Tips to manage and prevent discontinuation syndromes Informed tapering can protect patients when you stop a medication Sriram Ramaswamy, MD Shruti Malik, MBBS, MHSA Vijay Dewan, MD Instructor, department of psychiatry Foreign medical graduate Assistant professor Creighton University Department of psychiatry Omaha, NE University of Nebraska Medical Center Omaha, NE bruptly stopping common psychotropics New insights on psychotropic A —particularly antidepressants, benzodi- drug safety and side effects azepines, or atypical antipsychotics—can trigger a discontinuation syndrome, with: This paper was among those entered in the 2005 • rebound or relapse of original symptoms Promising New Investigators competition sponsored • uncomfortable new physical and psycho- by the Neuroleptic Malignant Syndrome Information Service (NMSIS). The theme of this year’s competition logical symptoms was “New insights on psychotropic drug safety and • physiologic withdrawal at times. side effects.” To increase health professionals’ awareness of URRENT SYCHIATRY 1 C P is honored to publish this peer- the risk of these adverse effects, this article reviewed, evidence-based article on a clinically describes discontinuation syndromes associated important topic for practicing psychiatrists. with various psychotropics and offers strategies to NMSIS is dedicated to reducing morbidity and anticipate, recognize, and manage them. mortality of NMS by improving medical and psychiatric care of patients with heat-related disorders; providing
    [Show full text]
  • PRESCRIBED DRUGS and NEUROLOGICAL COMPLICATIONS K a Grosset, D G Grosset Iii2
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2004.045757 on 16 August 2004. Downloaded from PRESCRIBED DRUGS AND NEUROLOGICAL COMPLICATIONS K A Grosset, D G Grosset iii2 J Neurol Neurosurg Psychiatry 2004;75(Suppl III):iii2–iii8. doi: 10.1136/jnnp.2004.045757 treatment history is a fundamental part of the healthcare consultation. Current drugs (prescribed, over the counter, herbal remedies, drugs of misuse) and how they are taken A(frequency, timing, missed and extra doses), drugs tried previously and reason for discontinuation, treatment response, adverse effects, allergies, and intolerances should be taken into account. Recent immunisations may also be of importance. This article examines the particular relevance of medication in patients presenting with neurological symptoms. Drugs and their interactions may contribute in part or fully to the neurological syndrome, and treatment response may assist diagnostically or in future management plans. Knowledge of medicine taking behaviour may clarify clinical presentations such as analgesic overuse causing chronic daily headache, or severe dyskinesia resulting from obsessive use of dopamine replacement treatment. In most cases, iatrogenic symptoms are best managed by withdrawal of the offending drug. Indirect mechanisms whereby drugs could cause neurological problems are beyond the scope of the current article—for example, drugs which raise blood pressure or which worsen glycaemic control and consequently increase the risk of cerebrovascular disease, or immunosupressants
    [Show full text]
  • A NMDA-Receptor Calcium Influx Assay Sensitive to Stimulation By
    www.nature.com/scientificreports OPEN A NMDA-receptor calcium infux assay sensitive to stimulation by glutamate and glycine/D-serine Received: 11 May 2017 Hongqiu Guo1, L. Miguel Camargo 1, Fred Yeboah1, Mary Ellen Digan1, Honglin Niu1, Yue Accepted: 1 September 2017 Pan2, Stephan Reiling1, Gilberto Soler-Llavina3, Wilhelm A. Weihofen1, Hao-Ran Wang1, Y. Published: xx xx xxxx Gopi Shanker3, Travis Stams1 & Anke Bill1 N-methyl-D-aspartate-receptors (NMDARs) are ionotropic glutamate receptors that function in synaptic transmission, plasticity and cognition. Malfunction of NMDARs has been implicated in a variety of nervous system disorders, making them attractive therapeutic targets. Overexpression of functional NMDAR in non-neuronal cells results in cell death by excitotoxicity, hindering the development of cell- based assays for NMDAR drug discovery. Here we report a plate-based, high-throughput approach to study NMDAR function. Our assay enables the functional study of NMDARs with diferent subunit composition after activation by glycine/D-serine or glutamate and hence presents the frst plate-based, high throughput assay that allows for the measurement of NMDAR function in glycine/D-serine and/ or glutamate sensitive modes. This allows to investigate the efect of small molecule modulators on the activation of NMDARs at diferent concentrations or combinations of the co-ligands. The reported assay system faithfully replicates the pharmacology of the receptor in response to known agonists, antagonists, positive and negative allosteric modulators, as well as the receptor’s sensitivity to magnesium and zinc. We believe that the ability to study the biology of NMDARs rapidly and in large scale screens will enable the identifcation of novel therapeutics whose discovery has otherwise been hindered by the limitations of existing cell based approaches.
    [Show full text]
  • Positive Allosteric Modulation of Indoleamine 2,3-Dioxygenase 1
    Positive allosteric modulation of indoleamine 2,3- dioxygenase 1 restrains neuroinflammation Giada Mondanellia, Alice Colettib, Francesco Antonio Grecob, Maria Teresa Pallottaa, Ciriana Orabonaa, Alberta Iaconoa, Maria Laura Belladonnaa, Elisa Albinia,b, Eleonora Panfilia, Francesca Fallarinoa, Marco Gargaroa, Giorgia Mannia, Davide Matinoa, Agostinho Carvalhoc,d, Cristina Cunhac,d, Patricia Macielc,d, Massimiliano Di Filippoe, Lorenzo Gaetanie, Roberta Bianchia, Carmine Vaccaa, Ioana Maria Iamandiia, Elisa Proiettia, Francesca Bosciaf, Lucio Annunziatof,1, Maikel Peppelenboschg, Paolo Puccettia, Paolo Calabresie,2, Antonio Macchiarulob,3, Laura Santambrogioh,i,j,3, Claudia Volpia,3,4, and Ursula Grohmanna,k,3,4 aDepartment of Experimental Medicine, University of Perugia, 06100 Perugia, Italy; bDepartment of Pharmaceutical Sciences, University of Perugia, 06100 Perugia, Italy; cLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; dICVS/3B’s–PT Government Associate Laboratory, 4704-553 Braga/Guimarães, Portugal; eDepartment of Medicine, University of Perugia, 06100 Perugia, Italy; fDepartment of Neuroscience, University of Naples Federico II, 80131 Naples, Italy; gDepartment of Gastroenterology and Hepatology, Erasmus Medical Centre–University Medical Centre Rotterdam, 3015 GD Rotterdam, The Netherlands; hEnglander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY 10065; iDepartment of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065; jDepartment of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065; and kDepartment of Pathology, Albert Einstein College of Medicine, New York, NY 10461 Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved January 16, 2020 (received for review October 21, 2019) L-tryptophan (Trp), an essential amino acid for mammals, is the or necessary to contain the pathology (20).
    [Show full text]
  • Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: a New Class of Atypical Antipsychotics
    pharmaceuticals Review Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics Irene Fasciani 1, Francesco Petragnano 1, Gabriella Aloisi 1, Francesco Marampon 2, Marco Carli 3 , Marco Scarselli 3, Roberto Maggio 1,* and Mario Rossi 4 1 Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; [email protected] (I.F.); [email protected] (F.P.); [email protected] (G.A.) 2 Department of Radiotherapy, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy; [email protected] 3 Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (M.C.); [email protected] (M.S.) 4 Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] * Correspondence: [email protected] Received: 26 September 2020; Accepted: 11 November 2020; Published: 14 November 2020 Abstract: Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists.
    [Show full text]
  • Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys
    1521-0103/366/2/397–409$35.00 https://doi.org/10.1124/jpet.118.248070 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:397–409, August 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Involvement of Nicotinic Receptor Subtypes in the Behavioral Effects of Nicotinic Drugs in Squirrel Monkeys Sarah L. Withey,1 Michelle R. Doyle,1,2 Jack Bergman, and Rajeev I. Desai Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts Received January 27, 2018; accepted May 17, 2018 ABSTRACT Evidence suggests that the a4b2, but not the a7, subtype of the except for lobeline, the nicotinic agonists produced either full nicotinic acetylcholine receptor (nAChR) plays a key role in [(1)-epibatidine, (2)-epibatidine, and nicotine] or partial (vare- Downloaded from mediating the behavioral effects of nicotine and related drugs. nicline, cytisine, anabaseine, and isoarecolone) substitution for However, the importance of other nAChR subtypes remains (1)-epibatidine. In interaction studies with antagonists differing unclear. The present studies were conducted to examine the in selectivity, (1)-epibatidine discrimination was substan- involvement of nAChR subtypes by determining the effects of tively antagonized by mecamylamine, slightly attenuated selected nicotinic agonists and antagonists in squirrel monkeys by hexamethonium (peripherally restricted) or dihydro- b a either 1) responding for food reinforcement or 2) discriminating the -erythroidine, and not altered by methyllycaconitine ( 7 jpet.aspetjournals.org nicotinic agonist (1)-epibatidine (0.001 mg/kg) from vehicle. In selective). Varenicline and cytisine enhanced (1)-epibati- food-reinforcement studies, nicotine, (1)-epibatidine, varenicline dine’s discriminative-stimulus effects.
    [Show full text]
  • Pharmacology of a Novel Biased Allosteric Modulator for NMDA Receptors
    Pharmacology of a Novel Biased Allosteric Modulator for NMDA Receptors Lina Kwapisz Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Biomedical and Veterinary Sciences B. Costa, Co-Chair B. Klein M. Theus C. Reilly April 28th of 2021 Blacksburg, VA Keywords: NMDAR, allosteric modulation, CNS4, glutamate Pharmacology of a Novel Biased Allosteric Modulator for NMDA Receptors Lina Kwapisz ABSTRACT NMDA glutamate receptor is a ligand-gated ion channel that mediates a major component of excitatory neurotransmission in the central nervous system (CNS). NMDA receptors are activated by simultaneous binding of two different agonists, glutamate and glycine/ D- serine1. With aging, glutamate concentration gets altered, giving rise to glutamate toxicity that contributes to age-related pathologies like Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and dementia88,95. Some treatments for these conditions include NMDA receptor blockers like memantine130. However, when completely blocking the receptors, there is a restriction of the receptor’s normal physiological function59. A different approach to regulate NMDAR receptors is thorough allosteric modulators that could allow cell type or circuit-specific modulation, due to widely distributed GluN2 expression, without global NMDAR overactivation59,65,122. In one study, we hypothesized that the compound CNS4 selectively modulates NMDA diheteromeric receptors (GluN2A, GluN2B, GuN2C, and GluN2C) based on (three) different glutamate concentrations. Electrophysiological recordings carried out on recombinant NMDA receptors expressed in xenopus oocytes revealed that 30μM and 100μM of CNS4 potentiated ionic currents for the GluN2C and GluN2D subunits with 0.3μM Glu/100μM Gly.
    [Show full text]
  • Allosteric Modulation of GABAA Receptors by an Anilino Enaminone in an Olfactory Center of the Mouse Brain
    Pharmaceuticals 2014, 7, 1069-1090; doi:10.3390/ph7121069 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Allosteric Modulation of GABAA Receptors by an Anilino Enaminone in an Olfactory Center of the Mouse Brain Thomas Heinbockel 1,*, Ze-Jun Wang 1 and Patrice L. Jackson-Ayotunde 2 1 Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA; E-Mail: [email protected] 2 Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-202-806-9873. External Editor: Marlene A. Jacobson Received: 15 April 2014; in revised form: 24 November 2014 / Accepted: 4 December 2014 / Published: 17 December 2014 Abstract: In an ongoing effort to identify novel drugs that can be used as neurotherapeutic compounds, we have focused on anilino enaminones as potential anticonvulsant agents. Enaminones are organic compounds containing a conjugated system of an amine, an alkene and a ketone. Here, we review the effects of a small library of anilino enaminones on neuronal activity. Our experimental approach employs an olfactory bulb brain slice preparation using whole-cell patch-clamp recording from mitral cells in the main olfactory bulb. The main olfactory bulb is a key integrative center in the olfactory pathway. Mitral cells are the principal output neurons of the main olfactory bulb, receiving olfactory receptor neuron input at their dendrites within glomeruli, and projecting glutamatergic axons through the lateral olfactory tract to the olfactory cortex. The compounds tested are known to be effective in attenuating pentylenetetrazol (PTZ) induced convulsions in rodent models.
    [Show full text]
  • Channelopathies Influence on Neurotransmitters Monitorable By
    Medical and Clinical Archives Review Article ISSN: 2515-1053 Channelopathies influence on neurotransmitters monitorable by real time in situ voltammetry, a review and research proposal Francesco Crespi* Biology Department, GSK, Verona, Italy Introduction Ataxia Channels are pores and through them ions flow across the cell Ataxia is a non-specific clinical condition characterized by membrane and depolarize or hyperpolarize the cell. They open in dysfunction of the areas of the nervous system that control movement, response to voltage changes or binding of a chemical messenger, such as the cerebellum [10]. such as a neurotransmitter (i.e. ligand-gated ion channels). A possible link between cerebellar ataxia and the metabolism Biochemically, channels are specialized membrane macro-molecular of serotonin has been proposed as anti-ataxic effect of buspirone protein complexes divided into distinct protein units called sub-units. hydrochloride, a serotoninergic 5-hydroxytryptamine1A (5-HT1A) Each sub-unit has a specific function and is encoded by a different gene. agonist, in a homogenous group of patients characterized by the These proteins play heterogeneous physiological roles such as impulse same well-defined single condition i.e. cerebellary cortical atrophy generation and propagation, synaptic transmission and plasticity, has been reported [11]. Accordingly, it has been observed that hormonal secretion, hearth rhythm, blood pressure regulation, salt- 5-hydroxytryptophan, serotonin precursor, is more effective than water balance, cell proliferation and survival. Thus, defects in ion placebo improving neurological symptoms in patients with Friedreich channels function may cause diverse and severe diseases collectively ataxia (FA) [12]. FA is an autosomal recessive genetic illness responsible known as channelization [1,2].
    [Show full text]