'Party Drug' Turned Antidepressant Approaches Approval

Total Page:16

File Type:pdf, Size:1020Kb

'Party Drug' Turned Antidepressant Approaches Approval NEWS & ANALYSIS Nature Reviews Drug Discovery | Published online 30 Oct 2018; doi:10.1038/nrd.2018.187 ‘Party drug’ turned anti depressant approaches approval Johnson & Johnson has submitted its esketamine for regulatory approval, but researchers still don’t understand how the fast-acting antidepressant lifts moods. DrAfter123/DigitalVision Vectors Sara Reardon Monteggia, a neuroscientist at Vanderbilt later learned that the antibiotic, at low doses, University. blocks the NMDA receptor, a glutamate When researchers showed in 2006 that the Yet it is far from clear how this work will receptor. Then in the late 1990s,Nature when Reviews | Drug Discovery anaesthetic ketamine — also known as the play out. Whereas early evidence suggested psychiatrist John Krystal of Yale University club drug Special K — was a rapid and potent that ketamine acted through the NMDA was curious about whether the antidepressant, big pharmaceutical receptor, many of the first-generation neurotransmitter glutamate contributed to companies quickly jumped into the game. ketamine mimetics that were designed to act schizophrenia, he decided to test the known Extensive efforts to improve on decades-old on this target failed in clinical trials (TABLE 1). NMDA receptor antagonist ketamine in nine antidepressants had floundered, but ketamine Accumulating evidence now suggests that depressed patients. finally promised a novel mechanism of action ketamine’s antidepressant activity may be At the time, glutamate had mostly been and the potential to help treatment-resistant more complicated. studied for its role in learning and memory. But patients. As a result, some companies are quietly Krystal’s group found that ketamine induced a Because ketamine is an old drug and going back to the drawing board. “My sense is rapid improvement in mood in patients. difficult to commercialize for a new that NMDA-receptor blocking studies are Zarate and Husseini Manji, who is now head indication, early entrants into this space set diminishing quite quickly and people are neuroscience researcher at J&J, set out to out to build ketamine mimetics that could looking at other mechanisms,” says replicate the surprising findings at the NIMH in replicate the anaesthetic’s effect, ideally psychiatrist Carlos Zarate at the National a larger trial, enrolling 18 subjects with major without its hallucinatory side effects. A few Institute of Mental Health (NIMH). While depression. The results from this small study of these ketamine-inspired drugs are now NMDA blockers haven’t been abandoned, suggested that ketamine was a miracle drug — nearing the finish line (TABLE 1). In September, he says, “companies are just giving a second lifting a person’s mood almost immediately. Johnson & Johnson (J&J) filed for FDA approval thought to whether they want to continue Reporting in the Archives of General Psychiatry, of a nasal spray containing esketamine — an pursuing these programmes.” Until a clearer they showed that 70% of depressed patients isomer of ketamine that the company has picture of the mechanism is worked out, the responded to ketamine within 24 hours. By patented. Despite some lingering questions field may be doomed to a trial and error hunt contrast, in one of the largest studies of people about its efficacy compared with ketamine, for better-than-ketamine mimetics. with depression, only one-third of patients experts in the field expect the drug will be responded to selective serotonin reuptake approved, providing the first antidepressant Novel antidepressant activity inhibitors (SSRIs) after 8 weeks. breakthrough in decades. The most commonly used antidepressants Ketamine also appears to reduce suicidal “What’s exciting is not that there’s going target signalling by the monoamine thoughts — something that no other drug is to be a new drug approved, but that we’re neurotransmitters serotonin, dopamine and known to do — and its effects last for weeks going to have a whole new class of drug noradrenaline. But starting in the 1950s, to months. approved,” says psychiatrist James Murrough researchers using the antibiotic D-cycloserine “Ketamine works so well it would be hard at Mount Sinai Hospital. “Everyone’s waiting to treat tuberculosis found that the drug to do better,” says neuroscientist Todd Gould with bated breath.” alleviated patient melancholy. Researchers of the University of Maryland. Some clinics This is fostering high hopes that have taken this conclusion to heart, and are psychiatric drug development — which has already offering ketamine to depressed seen an exodus of major pharma companies patients on an off-label basis (BOX 1). Drug owing to continuing failures — could be developers have meanwhile been working poised for a renaissance. The number of What’s exciting is not that hard to make next-generation alternatives, ketamine trials has skyrocketed, not only in armed with a preliminary hypothesis for how depression but also for obsessive–compulsive there’s going to be a new the drug lifts moods. disorder, post-traumatic stress disorder drug approved, but that we’re When ketamine is used as an anaesthetic and even chronic pain. “If ketamine works and going to have a whole new or a hallucinogen, it blocks the NMDA we understand the effects of ketamine on class of drug approved receptor. This in turn stimulates the release these different disorders, it could really open of a glutamate burst, which is believed to be the way for drug discovery,” says Lisa responsible for the drug’s hallucinatory NATURE REVIEWS | DRUG DISCOVERY VOLUME 17 | NOVEMBER 2018 | 773 ©2018 Spri nger Nature Li mited. All ri ghts reserved. NEWS & ANALYSIS Table 1 | Select list of ketamine mimetics as antidepressants Drug Company Mechanism Status Esketamine Janssen/J&J NMDAR antagonist NDA Rapastinel (formerly GLYX-13) Allergan NMDAR partial agonist Phase III AV-101 VistaGen Therapeutics NMDAR antagonist Phase II NRX-101 (D-cycloserine plus lurasidone) NeuroRx Pharma NMDAR modulator plus 5-HT2A receptor antagonist Phase II AGN -241751 Allergan NMDAR modulator or partial agonist Phase II AXS-05 (dextromethorphan plus bupropion) Axsome Therapeutics NMDAR antagonist plus norepinephrine and Phase I dopamine reuptake inhibitor Traxoprodil Pfizer NMDAR antagonist Discontinued Lanicemine AstraZeneca NMDAR antagonist Discontinued Decoglurant and basimglurant Roche mGlu modulators Discontinued Rislenemdaz Cerecor/Merck & Co. NMDAR antagonist Discontinued 5-HT2A, 5-hydroxytryptamine receptor 2A; J&J, Johnson & Johnson, mGlu, metabotropic glutamate receptor; NDA, new drug application; NMDAR, N-methyl-D- aspartate receptor. effects. The neurotransmitter then stimulates side effects, researchers hope that success for Others aren’t ready to give up on NMDA other receptors that control gene J&J will lift all boats. inhibition just yet. Monteggia reported earlier transcription to enable rapid rewiring of brain “I think once esketamine is approved, and this year in Neuropsychopharmacology that circuits. This rewiring, or plasticity, is thought it becomes likely a multibillion-dollar drug, when she repeated a similar experiment, she to cause the antidepressant effect. you’ll see big pharma coming back,” says drug found that very high levels of HNK could When developing a pharmaceutical researcher Ronald Duman at Yale University. indirectly block the NMDA receptor through version of ketamine, companies have an as-yet-unknown mechanism. generally decided to target the start of this Upping the AMPA? J&J’s Manji is also skeptical about reading pathway. J&J, for instance, chose to develop Basic research on ketamine’s mechanism of too much into the effect of HNK in mice. If the the S-enantiomer of ketamine because it is action complicates future ketamine-mimetic NMDA receptor is uninvolved, the company’s four times as potent at blocking the NMDA discovery plans, however. In 2016, Gould and esketamine nasal spray should not work as receptor as regular ketamine, which is a mix Zarate published a startling paper in Nature, well as it has, Manji says. He suspects that of R and S-enantiomers. J&J’s Manji says that proposing that a metabolic byproduct previous NMDA antagonist failures can the company has no plans to compare its of ketamine — not the drug itself — was largely be chalked up to dosing problems and product directly with ketamine in a clinical responsible for the mood altering side effect profiles, rather than a problem trial. But overall, esketamine’s side effects — activity in mice. The metabolite (2R,6R)- with the target itself. including hallucinations — seem similar to hydroxynorketamine, or HNK, didn’t seem to Researchers are trying to reconcile these the original drug. interact with the NMDA receptor at all. Nor various results. For instance, ketamine might The company recently published results did it appear to cause the hallucinatory side quickly reverse depression by blocking the from two phase III studies on depression, effects of esketamine, even at doses nearly NMDA receptor, but perhaps HNK is and will conclude a suicidal ideation trial 40 times greater than the normal dose of responsible for maintaining the effect over next year. Clinical trial results were mixed, ketamine. time, says Monteggia. Zarate and Gould are however. In one study of 223 participants, The result suggested that drug developers planning to file for FDA permission later this esketamine significantly reduced depression may have been going after the wrong target year to start clinical trials with HNK in 2019, at 28 days. But the results
Recommended publications
  • Abstract Book – Oral Sessions
    Sunday, June 21, 2015 12:00 p.m. - 1:15 p.m. Latin American Psychopharmacology Update: INNOVATIVE TREATMENTS IN PSYCHIATRY INNOVATIVE TREATMENTS IN PSYCHIATRY Flavio Kapczinski, The University of Texas Health Science Center at Houston Overall Abstract In this panel, we will propose innovative treatments in psychiatry and recent literature findings will be summarized. The effective pharmacological treatment of psychiatric diseases and development of new therapeutic entities has been a long-standing challenge. Despite the complexity and heterogeneity of psychiatric disorders, basic and clinical research studies and technological advancements in genomics, biomarkers, and imaging have begun to elucidate the pathophysiology of etiological complexity of psychiatric diseases and to identify efficacious new agents (Tcheremissine et al. 2014). Many psychiatric illnesses are associated with neuronal atrophy, characterized by loss of synaptic connections, increase of inflammatory markers like TNF-α and DAMPS (damage-associate molecular patterns,- cell free (ccf) DNA, heat shock proteins HSP70, HSP90, and HSP60, and cytochrome C), decrease of neurotrophic factors, increase of oxidative stress, mitochondrial dysfunction and apoptosis (Fries et al., 2012; Pfaffenseller et al., 2014). Also, neurocognitive impairment and poor psychosocial functioning has been related to a psychiatric disease. Therefore, trying to discover new therapeutic targets that act in these pathways can help to develop new treatment or improve the treatment of these serious diseases.
    [Show full text]
  • Metabotropic Glutamate Receptors
    mGluR Metabotropic glutamate receptors mGluR (metabotropic glutamate receptor) is a type of glutamate receptor that are active through an indirect metabotropic process. They are members of thegroup C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatoryneurotransmitter. The mGluRs perform a variety of functions in the central and peripheral nervous systems: mGluRs are involved in learning, memory, anxiety, and the perception of pain. mGluRs are found in pre- and postsynaptic neurons in synapses of the hippocampus, cerebellum, and the cerebral cortex, as well as other parts of the brain and in peripheral tissues. Eight different types of mGluRs, labeled mGluR1 to mGluR8, are divided into groups I, II, and III. Receptor types are grouped based on receptor structure and physiological activity. www.MedChemExpress.com 1 mGluR Agonists, Antagonists, Inhibitors, Modulators & Activators (-)-Camphoric acid (1R,2S)-VU0155041 Cat. No.: HY-122808 Cat. No.: HY-14417A (-)-Camphoric acid is the less active enantiomer (1R,2S)-VU0155041, Cis regioisomer of VU0155041, is of Camphoric acid. Camphoric acid stimulates a partial mGluR4 agonist with an EC50 of 2.35 osteoblast differentiation and induces μM. glutamate receptor expression. Camphoric acid also significantly induced the activation of NF-κB and AP-1. Purity: ≥98.0% Purity: ≥98.0% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10 mM × 1 mL, 100 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg (2R,4R)-APDC (R)-ADX-47273 Cat. No.: HY-102091 Cat. No.: HY-13058B (2R,4R)-APDC is a selective group II metabotropic (R)-ADX-47273 is a potent mGluR5 positive glutamate receptors (mGluRs) agonist.
    [Show full text]
  • Investigation of the Cardiac Effects of Pancuronium, Rocuronium, Vecuronium, and Mivacurium on the Isolated Rat Atrium
    Current Therapeutic Research VOLUME ,NUMBER ,OCTOBER Investigation of the Cardiac Effects of Pancuronium, Rocuronium, Vecuronium, and Mivacurium on the Isolated Rat Atrium Sinan Gursoy, MD1; Ihsan Bagcivan, MD2; Nedim Durmus, MD3; Kenan Kaygusuz, MD1; Iclal Ozdemir Kol, MD1; Cevdet Duger, MD1; Sahin Yildirim, MD2; and Caner Mimaroglu, MD1 1Department of Anesthesiology, Cumhuriyet University School of Medicine, Sivas, Turkey; 2Department of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey; and 3Ministry of Health of Turkey, General Directorate of Pharmacy and Pharmaceuticals, Ankara, Turkey ABSTRACT Background: Pancuronium, vecuronium, rocuronium, and mivacurium are nondepolarizing neuromuscular blocking agents that affect the cardiovascular system with different potencies. Their cardiovascular effects are clinically significant in the anesthetic management of patients, particularly those undergoing cardiac surgery. Objective: We aimed to compare the cardiac effects of these compounds, such as heart rate and developed force, in one species under identical experimental conditions in isolated rat atria. Methods: The left or right atria of rats were removed and suspended in organ baths. Pancuronium, vecuronium, rocuronium, or mivacurium were added cumula- tively (10–9–10–5 M) in the presence and absence of the nonselective ␤-blocker propranolol (10–8 M) and the noradrenaline reuptake inhibitor desipramine (10–7 M), and heart rate changes were recorded in spontaneously beating right atria. Left atrial preparations were stimulated by electrical field stimulation using a bipolar platinum electrode, and the effects of cumulative concentrations of these nondepolarizing neuromuscular blocking agents on the developed force in the presence and absence of propranolol (10–8 M) and desipramine (10–7 M) were recorded. Results: Pancuronium increased heart rate in a dose-dependent manner com- pared with the control group (P Ͻ 0.027).
    [Show full text]
  • Sciatica and Chronic Pain
    Sciatica and Chronic Pain Past, Present and Future Robert W. Baloh 123 Sciatica and Chronic Pain Robert W. Baloh Sciatica and Chronic Pain Past, Present and Future Robert W. Baloh, MD Department of Neurology University of California, Los Angeles Los Angeles, CA, USA ISBN 978-3-319-93903-2 ISBN 978-3-319-93904-9 (eBook) https://doi.org/10.1007/978-3-319-93904-9 Library of Congress Control Number: 2018952076 © Springer International Publishing AG, part of Springer Nature 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
    [Show full text]
  • Additional Antidepressant Pharmacotherapies According to A
    orders & is T D h e n r Werner and Coveñas, Brain Disord Ther 2016, 5:1 i a a p r y B Brain Disorders & Therapy DOI: 10.4172/2168-975X.1000203 ISSN: 2168-975X Review Article Open Access Additional Antidepressant Pharmacotherapies According to a Neural Network Felix-Martin Werner1, 2* and Rafael Coveñas2 1Higher Vocational School of Elderly Care and Occupational Therapy, Euro Academy, Pößneck, Germany 2Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain Abstract Major depression, a frequent psychiatric disease, is associated with neurotransmitter alterations in the midbrain, hypothalamus and hippocampus. Deficiency of postsynaptic excitatory neurotransmitters such as dopamine, noradrenaline and serotonin and a surplus of presynaptic inhibitory neurotransmitters such as GABA and glutamate (mainly a postsynaptic excitatory and partly a presynaptic inhibitory neurotransmitter), can be found in the involved brain regions. However, neuropeptide alterations (galanin, neuropeptide Y, substance P) also play an important role in its pathogenesis. A neural network is described, including the alterations of neuroactive substances at specific subreceptors. Currently, major depression is treated with monoamine reuptake inhibitors. An additional therapeutic option could be the administration of antagonists of presynaptic inhibitory neurotransmitters or the administration of agonists/antagonists of neuropeptides. Keywords: Acetylcholine; Bupropion; Dopamine; GABA; Galanin; in major depression and to point out the coherence between single Glutamate; Hippocampus; Hhypothalamus; Major depression; neuroactive substances and their corresponding subreceptors. A Midbrain; Neural network; Neuropeptide Y; Noradrenaline; Serotonin; question should be answered, whether a multimodal pharmacotherapy Substance P with an agonistic or antagonistic effect at several subreceptors is higher than the current conventional antidepressant treatment.
    [Show full text]
  • Current P SYCHIATRY
    Current p SYCHIATRY N ew Investigators Tips to manage and prevent discontinuation syndromes Informed tapering can protect patients when you stop a medication Sriram Ramaswamy, MD Shruti Malik, MBBS, MHSA Vijay Dewan, MD Instructor, department of psychiatry Foreign medical graduate Assistant professor Creighton University Department of psychiatry Omaha, NE University of Nebraska Medical Center Omaha, NE bruptly stopping common psychotropics New insights on psychotropic A —particularly antidepressants, benzodi- drug safety and side effects azepines, or atypical antipsychotics—can trigger a discontinuation syndrome, with: This paper was among those entered in the 2005 • rebound or relapse of original symptoms Promising New Investigators competition sponsored • uncomfortable new physical and psycho- by the Neuroleptic Malignant Syndrome Information Service (NMSIS). The theme of this year’s competition logical symptoms was “New insights on psychotropic drug safety and • physiologic withdrawal at times. side effects.” To increase health professionals’ awareness of URRENT SYCHIATRY 1 C P is honored to publish this peer- the risk of these adverse effects, this article reviewed, evidence-based article on a clinically describes discontinuation syndromes associated important topic for practicing psychiatrists. with various psychotropics and offers strategies to NMSIS is dedicated to reducing morbidity and anticipate, recognize, and manage them. mortality of NMS by improving medical and psychiatric care of patients with heat-related disorders; providing
    [Show full text]
  • A Human Stem Cell-Derived Test System for Agents Modifying Neuronal N
    Archives of Toxicology (2021) 95:1703–1722 https://doi.org/10.1007/s00204-021-03024-0 IN VITRO SYSTEMS A human stem cell‑derived test system for agents modifying neuronal 2+ N‑methyl‑D‑aspartate‑type glutamate receptor Ca ‑signalling Stefanie Klima1,2 · Markus Brüll1 · Anna‑Sophie Spreng1,3 · Ilinca Suciu1,3 · Tjalda Falt1 · Jens C. Schwamborn4 · Tanja Waldmann1 · Christiaan Karreman1 · Marcel Leist1,5 Received: 28 October 2020 / Accepted: 4 March 2021 / Published online: 13 March 2021 © The Author(s) 2021 Abstract Methods to assess neuronal receptor functions are needed in toxicology and for drug development. Human-based test systems that allow studies on glutamate signalling are still scarce. To address this issue, we developed and characterized pluripotent stem cell (PSC)-based neural cultures capable of forming a functional network. Starting from a stably proliferating neu- roepithelial stem cell (NESC) population, we generate “mixed cortical cultures” (MCC) within 24 days. Characterization by immunocytochemistry, gene expression profling and functional tests (multi-electrode arrays) showed that MCC contain various functional neurotransmitter receptors, and in particular, the N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDA-R). As this important receptor is found neither on conventional neural cell lines nor on most stem cell- derived neurons, we focused here on the characterization of rapid glutamate-triggered Ca2+ signalling. Changes of the intra- 2+ cellular free calcium ion concentration ([Ca ]i) were measured by fuorescent imaging as the main endpoint, and a method to evaluate and quantify signals in hundreds of cells at the same time was developed. We observed responses to glutamate in the low µM range.
    [Show full text]
  • Advances in Non-Dopaminergic Treatments for Parkinson's Disease
    REVIEW ARTICLE published: 22 May 2014 doi: 10.3389/fnins.2014.00113 Advances in non-dopaminergic treatments for Parkinson’s disease Sandy Stayte 1,2 and Bryce Vissel 1,2* 1 Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia 2 Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia Edited by: Since the 1960’s treatments for Parkinson’s disease (PD) have traditionally been directed Eero Vasar, University of Tartu, to restore or replace dopamine, with L-Dopa being the gold standard. However, chronic Estonia L-Dopa use is associated with debilitating dyskinesias, limiting its effectiveness. This has Reviewed by: resulted in extensive efforts to develop new therapies that work in ways other than Andrew Harkin, Trinity College Dublin, Ireland restoring or replacing dopamine. Here we describe newly emerging non-dopaminergic Sulev Kõks, University of Tartu, therapeutic strategies for PD, including drugs targeting adenosine, glutamate, adrenergic, Estonia and serotonin receptors, as well as GLP-1 agonists, calcium channel blockers, iron Pille Taba, Universoty of Tartu, chelators, anti-inflammatories, neurotrophic factors, and gene therapies. We provide a Estonia Pekka T. Männistö, University of detailed account of their success in animal models and their translation to human clinical Helsinki, Finland trials. We then consider how advances in understanding the mechanisms of PD, genetics, *Correspondence: the possibility that PD may consist of multiple disease states, understanding of the Bryce Vissel, Neuroscience etiology of PD in non-dopaminergic regions as well as advances in clinical trial design Department, Neurodegenerative will be essential for ongoing advances. We conclude that despite the challenges ahead, Disorders Laboratory, Garvan Institute of Medical Research, patients have much cause for optimism that novel therapeutics that offer better disease 384 Victoria Street, Darlinghurst, management and/or which slow disease progression are inevitable.
    [Show full text]
  • Therapy Focus – J&J Confirms Hope for New Mechanism in Depression
    May 09, 2018 Therapy focus – J&J confirms hope for new mechanism in depression Amy Brown The first look at late-stage data on Johnson & Johnson’s hotly-tipped novel antidepressant esketamine came at a medical conference last weekend, and the results were not quite as strong as many were hoping to see. Encouraging signals could be certainly be found, however, and J&J seems undeterred from trying to seek regulatory approval. Others pursing NMDA modulation in depression are also likely to draw comfort in the results, which provide the first phase III validation of this mechanism, and a clear bar to beat (see table below). Hopes for esketamine and other products like it lie in their similarity to ketamine, which at low doses displays antidepressant effects that kick in very quickly. Traditional antidepressants which act via the serotonergic system – selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) – can take weeks to have an effect; a large proportion of patients fail to respond at all. Hence the need for both faster acting agents – for example in suicidal patients – and novel mechanisms to treat those who need different options. A new target NMDA receptor modulation is a novel mechanism in depression. Over the last decade researchers have become increasingly convinced that dysregulation of glutamate, a neurotransmitter which signals through NMDA, plays an important role in the condition. This system is already known to be a factor in cognitive function and neurodegeneration and Namenda, the NMDA antagonist mematine, has been available as a treatment for Alzheimer’s dementia for several years.
    [Show full text]
  • PRESCRIBED DRUGS and NEUROLOGICAL COMPLICATIONS K a Grosset, D G Grosset Iii2
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2004.045757 on 16 August 2004. Downloaded from PRESCRIBED DRUGS AND NEUROLOGICAL COMPLICATIONS K A Grosset, D G Grosset iii2 J Neurol Neurosurg Psychiatry 2004;75(Suppl III):iii2–iii8. doi: 10.1136/jnnp.2004.045757 treatment history is a fundamental part of the healthcare consultation. Current drugs (prescribed, over the counter, herbal remedies, drugs of misuse) and how they are taken A(frequency, timing, missed and extra doses), drugs tried previously and reason for discontinuation, treatment response, adverse effects, allergies, and intolerances should be taken into account. Recent immunisations may also be of importance. This article examines the particular relevance of medication in patients presenting with neurological symptoms. Drugs and their interactions may contribute in part or fully to the neurological syndrome, and treatment response may assist diagnostically or in future management plans. Knowledge of medicine taking behaviour may clarify clinical presentations such as analgesic overuse causing chronic daily headache, or severe dyskinesia resulting from obsessive use of dopamine replacement treatment. In most cases, iatrogenic symptoms are best managed by withdrawal of the offending drug. Indirect mechanisms whereby drugs could cause neurological problems are beyond the scope of the current article—for example, drugs which raise blood pressure or which worsen glycaemic control and consequently increase the risk of cerebrovascular disease, or immunosupressants
    [Show full text]
  • Brain Metabolic Profile After Intranasal Vs. Intraperitoneal Clomipramine
    International Journal of Molecular Sciences Article Brain Metabolic Profile after Intranasal vs. Intraperitoneal Clomipramine Treatment in Rats with Ultrasound Model of Depression Olga Abramova 1,2, Yana Zorkina 1,2,* , Timur Syunyakov 2,3 , Eugene Zubkov 1, Valeria Ushakova 1,2, Artemiy Silantyev 1, Kristina Soloveva 2, Olga Gurina 1, Alexander Majouga 4, Anna Morozova 1,2 and Vladimir Chekhonin 1,5 1 V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; [email protected] (O.A.); [email protected] (E.Z.); [email protected] (V.U.); [email protected] (A.S.); [email protected] (O.G.); [email protected] (A.M.); [email protected] (V.C.) 2 Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; [email protected] (T.S.); [email protected] (K.S.) 3 Federal State Budgetary Institution Research Zakusov Institute of Pharmacology, 125315 Moscow, Russia 4 Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia; [email protected] 5 Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-916-588-4851 Citation: Abramova, O.; Zorkina, Y.; Abstract: Background: Molecular mechanisms of depression remain unclear. The brain metabolome Syunyakov, T.; Zubkov, E.; Ushakova, after antidepressant therapy is poorly understood and had not been performed for different routes V.; Silantyev, A.; Soloveva, K.; Gurina, of drug administration before the present study. Rats were exposed to chronic ultrasound stress O.; Majouga, A.; Morozova, A.; et al. and treated with intranasal and intraperitoneal clomipramine.
    [Show full text]
  • The Promise of Ketamine for Treatment-Resistant Depression: Current Evidence and Future Directions
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: Qatar Clinical Neuroscience Conference The promise of ketamine for treatment-resistant depression: current evidence and future directions Kaitlin E. DeWilde,1 Cara F. Levitch,1 James W. Murrough,1 Sanjay J. Mathew,2 and Dan V. Iosifescu1 1Mood and Anxiety Disorders Program, Icahn School of Medicine at Mount Sinai, New York, New York. 2Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas Address for correspondence: Dan V. Iosifescu, M.D., Mood and Anxiety Disorders Program, Icahn School of Medicine at Mount Sinai,1 Gustave L. Levy Place, Box 1230, New York, NY 10029. [email protected] Major depressive disorder (MDD) is one of the most disabling diseases worldwide and is becoming a significant public health threat. Current treatments for MDD primarily consist of monoamine-targeting agents and have limited efficacy. However, the glutamate neurotransmitter system has recently come into focus as a promising alternative for novel antidepressant treatments. We review the current data on the glutamate NMDA receptor antagonist ketamine, which has been shown in clinical trials to act as a rapid antidepressant in MDD. We also examine ketamine efficacy on dimensions of psychopathology, including anhedonia, cognition, and suicidality, consistent with the NIMH Research Domain Criteria initiative. Other aspects of ketamine reviewed in this paper include safety and efficacy, different administration methods, and the risks of misuse of ketamine outside of medical settings. Finally, we conclude with a discussion of glutamatergic agents other than ketamine currently being tested as novel antidepressants.
    [Show full text]