Dissertation Submitted to the Combined Faculties for the Natural
Total Page:16
File Type:pdf, Size:1020Kb
Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Dipl. Phys. Johann Peter Peiffer born in Bremen. Oral examination: July 25, 2007 Liquid argon as active shielding and coolant for bare germanium detectors A novel background suppression method for the G erda 0vj3j3 experiment Referees: Prof. Dr. Wolfgang Hampel Prof. Dr. Wolfgang Kratschmer Abstract Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the Standard Model and the absolute values of the neutrino masses. The neutrinoless double beta (0iy/3/3) decay, which can be investigated using 76Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0v/3/3 decay in the Heidelberg-Moscow (HdM) 76Ge experiment by a part of the HdM collaboration. The new 76Ge experiment G erda aims to check this claim within one year with 15 kg y of statistics in Phase I at a background level of <10"2 events/(kg-keV-y) and to go to higher sensitivity with 100 kg y of statistics in Phase II at a background level of <10"3 events/(kg keV y). In GERDA bare germanium semiconductor detectors (enriched in 76Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced 60Co is expected to be ^2.5TO"3 events/(kg keV y). LAr scintillates in UV (A=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for 60 Co and a factor 17 for 232 Th around <5/3/3=2039 keV. This suppression will further increase for a one ton active volume (factor 0(100) for 232Th and 60Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength shifter/reflector combination for the light detection has been developed, leading to a photo electron (pe) yield of as much as 1.2 pe/keV. With this pe-yield a discrimination factor of 2 • 106 between y-s and a-s and a factor 3 • 103 between y-s and neutrons has been achieved by pulse shape analysis. Zusammenfassung Zwei der wichtigsten offenen Fragen in der Teilchenphysik sind die, ob Neutrinos ihre eigenen An- titeilchen sind, wie die meisten Erweiterungen des Standardmodells vorhersagen und was die absolute Masse der Neutrinos ist. Die hochste Sensitivitat urn dies zu untersuchen bietet der neutrinolose Doppel- betazerfall (0is/3/3) der mittels des /3/3 Isotops 76Ce untersucht werden kann. Ein Teil der Kollaboration des 76Ce Experiments Heidelberg-Moskau (HdM) hat eine Evidenz fiir die Entdeckung des 0z//3/3-Zerfalls veroffentlicht. Das neue 0z//3/3-Experiment G erda wird 73Ge-angereicherte Germaniumdetektoren in Fhissigargon (LAr) betreiben urn diese Evidenz innerhalb eines Jahres (Phase I) mit 15 kg y Statistik bei einern Untergrund von <10"2 cts/(kg-keV-y) zu iiberpriifen. Das LAr dient dabei als Kiihlffiissigkeit und hochreine Abschirmung. Phase II wird mit 100 kg y und einern Untergrund von <10"3 cts/(kg-keV-y) in hbhere Sensitivitatsbereiche vorstofien. Dafiir sind neue Methoden zur Unterdriickung des kosmogenen Untergrunds der Dioden erforderlich, welcher fiir 60Co ^2.5TO"3 cts/(kg-keV-y) betragt. Fhissigargon ist ein Szintillator im UV Bereich (A=128 nm) und ein neuartiges Konzept ist es, das Szintillationslicht als Anti-Koinzidenzsignal fiir die Untergrundunterdriickung zu nutzen. In dieser Arbeit wurde die Effizienz eines solchen Anti-Koinzidenz-Vetos mittels LAr-Szintillation erstmalig untersucht. Mit einern Testaufbau (aktive LAr Masse 19 kg) wurde ein Faktor 3 Unterdriickung fiir 60Co und ein Faktor 17 fiir 232Th im Bere ich urn <5/3/3=2039 keV erreicht. Ein grofieres aktives Volumen wird die Unterdriickung welter verbessern (Faktor 0(100) fiir It LAr fiir 232Th und 60Co). Dariiber hinaus kann die LAr Szintillation zur Un- tergrunddiagnose eingesetzt werden. Dazu wurde eine neue, sehr stabile Wellenlangenschieber/Reflektor Kombination fiir den LAr-Szintillationslichtnachweis entwickelt, mit dem eine Lichtausbeute von 1.2 Pho- toelektronen pro keV erreicht wurde. Darnit wurde durch Pulsformanalyse ein Diskriminationsfaktor von 2 • 106 zwischen a-s und y-s und von 3 • 103 zwischen y-s und Neutronen erreicht. This work is dedicated to the memory of Dr. Burkhard Freudiger, who taught me much about physics, life, the universe and everything. Contents I Introduction 1 1 Neutrino-physics 3 1.1 Neutrinos in the standard model of particle physics ................................................. 3 1.2 Neutrino detection ......................................................................................................... 3 1.2.1 Neutrino interaction channels.......................................................................... 3 1.2.2 Detection methods ............................................................................................. 4 1.3 Neutrino physics beyond the standard model ............................................................ 5 1.3.1 The historical ’neutrino problems ’ and neutrino oscillations ......................... 5 1.3.2 Neutrino mixing and masses............................................................................. 6 1.3.3 Neutrinos as Majorana particles .................................................................... 8 1.4 The neutrino-less double beta decay.......................................................................... 8 2 CERDA 11 2.1 Motivation ..................................................................................................................... 11 2.2 Detection principle ......................................................................................................... 12 2.3 Backgrounds in Cerda ................................................................................................ 13 2.3.1 Background reduction and suppression methods ........................................... 15 2.3.2 Anti-coincidence background suppression principle ....................................... 16 2.4 Physics reach.................................................................................................................. 18 2.4.1 Phase I............................................................................................................... 18 2.4.2 Phase II............................................................................................................... 18 II II Active background suppression using liquid argon (LAr) scintillation 21 3 Liquid argon and the LArGe project 23 3.1 Liquid argon scintillation ............................................................................................. 23 3.1.1 Excimer formation ............................................................................................. 24 3.1.2 Light emission, time constants and photon yield ........................................ 24 3.2 The LArGe project ......................................................................................................... 25 3.3 Pulse shape analysis on LAr scintillation light .......................................................... 27 3.3.1 Pulse shape discrimination principle .............................................................. 27 3.3.2 Reducing the dead time................................................................................... 27 3.3.3 Additional physics potential ............................................................................. 27 3.4 A first, test of HP-Ge detector performance in LAr.................................................. 28 ii 4 The experimental setup 33 4.1 Requirements .................................................................................................................. 33 4.2 Setup description ............................................................................................................ 33 4.3 Front-end and DAQ electronics ................................................................................... 37 4.3.1 Simultaneous readout of the Ge-diode and the PMT.................................. 37 4.3.2 Calibration of the PMT................................................................................... 38 4.3.3 Measuring with the digital oscilloscope ........................................................... 39 4.3.4 The Bi-Po trigger ................................................................................................ 39 4.3.5 Simultaneous readout of the last dynodes .................................................... 39 4.4 Operations ..................................................................................................................... 41 4.4.1 Basic operations ................................................................................................ 41 4.4.2 Doping of the LAr with Xe and Rn................................................................. 41 4.5 Notes on germanium diode handling .........................................................................