Dissertation Submitted to the Combined Faculties for the Natural

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Submitted to the Combined Faculties for the Natural Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Dipl. Phys. Johann Peter Peiffer born in Bremen. Oral examination: July 25, 2007 Liquid argon as active shielding and coolant for bare germanium detectors A novel background suppression method for the G erda 0vj3j3 experiment Referees: Prof. Dr. Wolfgang Hampel Prof. Dr. Wolfgang Kratschmer Abstract Two of the most important open questions in particle physics are whether neutrinos are their own anti-particles (Majorana particles) as required by most extensions of the Standard Model and the absolute values of the neutrino masses. The neutrinoless double beta (0iy/3/3) decay, which can be investigated using 76Ge (a double beta isotope), is the most sensitive probe for these properties. There is a claim for an evidence for the 0v/3/3 decay in the Heidelberg-Moscow (HdM) 76Ge experiment by a part of the HdM collaboration. The new 76Ge experiment G erda aims to check this claim within one year with 15 kg y of statistics in Phase I at a background level of <10"2 events/(kg-keV-y) and to go to higher sensitivity with 100 kg y of statistics in Phase II at a background level of <10"3 events/(kg keV y). In GERDA bare germanium semiconductor detectors (enriched in 76Ge) will be operated in liquid argon (LAr). LAr serves as cryogenic coolant and as high purity shielding against external background. To reach the background level for Phase II, new methods are required to suppress the cosmogenic background of the diodes. The background from cosmogenically produced 60Co is expected to be ^2.5TO"3 events/(kg keV y). LAr scintillates in UV (A=128 nm) and a novel concept is to use this scintillation light as anti-coincidence signal for background suppression. In this work the efficiency of such a LAr scintillation veto was investigated for the first time. In a setup with 19 kg active LAr mass a suppression of a factor 3 has been achieved for 60 Co and a factor 17 for 232 Th around <5/3/3=2039 keV. This suppression will further increase for a one ton active volume (factor 0(100) for 232Th and 60Co). LAr scintillation can also be used as a powerful tool for background diagnostics. For this purpose a new, very stable and robust wavelength shifter/reflector combination for the light detection has been developed, leading to a photo electron (pe) yield of as much as 1.2 pe/keV. With this pe-yield a discrimination factor of 2 • 106 between y-s and a-s and a factor 3 • 103 between y-s and neutrons has been achieved by pulse shape analysis. Zusammenfassung Zwei der wichtigsten offenen Fragen in der Teilchenphysik sind die, ob Neutrinos ihre eigenen An- titeilchen sind, wie die meisten Erweiterungen des Standardmodells vorhersagen und was die absolute Masse der Neutrinos ist. Die hochste Sensitivitat urn dies zu untersuchen bietet der neutrinolose Doppel- betazerfall (0is/3/3) der mittels des /3/3 Isotops 76Ce untersucht werden kann. Ein Teil der Kollaboration des 76Ce Experiments Heidelberg-Moskau (HdM) hat eine Evidenz fiir die Entdeckung des 0z//3/3-Zerfalls veroffentlicht. Das neue 0z//3/3-Experiment G erda wird 73Ge-angereicherte Germaniumdetektoren in Fhissigargon (LAr) betreiben urn diese Evidenz innerhalb eines Jahres (Phase I) mit 15 kg y Statistik bei einern Untergrund von <10"2 cts/(kg-keV-y) zu iiberpriifen. Das LAr dient dabei als Kiihlffiissigkeit und hochreine Abschirmung. Phase II wird mit 100 kg y und einern Untergrund von <10"3 cts/(kg-keV-y) in hbhere Sensitivitatsbereiche vorstofien. Dafiir sind neue Methoden zur Unterdriickung des kosmogenen Untergrunds der Dioden erforderlich, welcher fiir 60Co ^2.5TO"3 cts/(kg-keV-y) betragt. Fhissigargon ist ein Szintillator im UV Bereich (A=128 nm) und ein neuartiges Konzept ist es, das Szintillationslicht als Anti-Koinzidenzsignal fiir die Untergrundunterdriickung zu nutzen. In dieser Arbeit wurde die Effizienz eines solchen Anti-Koinzidenz-Vetos mittels LAr-Szintillation erstmalig untersucht. Mit einern Testaufbau (aktive LAr Masse 19 kg) wurde ein Faktor 3 Unterdriickung fiir 60Co und ein Faktor 17 fiir 232Th im Bere­ ich urn <5/3/3=2039 keV erreicht. Ein grofieres aktives Volumen wird die Unterdriickung welter verbessern (Faktor 0(100) fiir It LAr fiir 232Th und 60Co). Dariiber hinaus kann die LAr Szintillation zur Un- tergrunddiagnose eingesetzt werden. Dazu wurde eine neue, sehr stabile Wellenlangenschieber/Reflektor Kombination fiir den LAr-Szintillationslichtnachweis entwickelt, mit dem eine Lichtausbeute von 1.2 Pho- toelektronen pro keV erreicht wurde. Darnit wurde durch Pulsformanalyse ein Diskriminationsfaktor von 2 • 106 zwischen a-s und y-s und von 3 • 103 zwischen y-s und Neutronen erreicht. This work is dedicated to the memory of Dr. Burkhard Freudiger, who taught me much about physics, life, the universe and everything. Contents I Introduction 1 1 Neutrino-physics 3 1.1 Neutrinos in the standard model of particle physics ................................................. 3 1.2 Neutrino detection ......................................................................................................... 3 1.2.1 Neutrino interaction channels.......................................................................... 3 1.2.2 Detection methods ............................................................................................. 4 1.3 Neutrino physics beyond the standard model ............................................................ 5 1.3.1 The historical ’neutrino problems ’ and neutrino oscillations ......................... 5 1.3.2 Neutrino mixing and masses............................................................................. 6 1.3.3 Neutrinos as Majorana particles .................................................................... 8 1.4 The neutrino-less double beta decay.......................................................................... 8 2 CERDA 11 2.1 Motivation ..................................................................................................................... 11 2.2 Detection principle ......................................................................................................... 12 2.3 Backgrounds in Cerda ................................................................................................ 13 2.3.1 Background reduction and suppression methods ........................................... 15 2.3.2 Anti-coincidence background suppression principle ....................................... 16 2.4 Physics reach.................................................................................................................. 18 2.4.1 Phase I............................................................................................................... 18 2.4.2 Phase II............................................................................................................... 18 II II Active background suppression using liquid argon (LAr) scintillation 21 3 Liquid argon and the LArGe project 23 3.1 Liquid argon scintillation ............................................................................................. 23 3.1.1 Excimer formation ............................................................................................. 24 3.1.2 Light emission, time constants and photon yield ........................................ 24 3.2 The LArGe project ......................................................................................................... 25 3.3 Pulse shape analysis on LAr scintillation light .......................................................... 27 3.3.1 Pulse shape discrimination principle .............................................................. 27 3.3.2 Reducing the dead time................................................................................... 27 3.3.3 Additional physics potential ............................................................................. 27 3.4 A first, test of HP-Ge detector performance in LAr.................................................. 28 ii 4 The experimental setup 33 4.1 Requirements .................................................................................................................. 33 4.2 Setup description ............................................................................................................ 33 4.3 Front-end and DAQ electronics ................................................................................... 37 4.3.1 Simultaneous readout of the Ge-diode and the PMT.................................. 37 4.3.2 Calibration of the PMT................................................................................... 38 4.3.3 Measuring with the digital oscilloscope ........................................................... 39 4.3.4 The Bi-Po trigger ................................................................................................ 39 4.3.5 Simultaneous readout of the last dynodes .................................................... 39 4.4 Operations ..................................................................................................................... 41 4.4.1 Basic operations ................................................................................................ 41 4.4.2 Doping of the LAr with Xe and Rn................................................................. 41 4.5 Notes on germanium diode handling .........................................................................
Recommended publications
  • MAY the Bridges I BURN Light the WAY EXILE X Summer Camp
    M ay the brid G es I burn L I G ht the way EXILE X summer camp June 13 - 17, 2018 Curated by María Inés Plaza Lazo In collaboration with Alina Kolar, Dalia Maini & Christian Siekmeier PARTICI PANTS in 2008. Within the last 10 years EXILE Del Vecchio is an artist and co-curator of Narine Arakelyan is a performance artist concluded an MA at Goldsmiths, University has operated out of five distinctly different flip project space, a collaborative project for that works in conjunction with a Moscow of London. Graduated in Psychology, her Albrecht Pischel is interested in the definition spaces in Berlin. In 2011 EXILE became critical experimentation. He attended the based group of producers known as laboratory ongoing research unveils post-historical identity, of a new internationality and its ghosts. Most a professionally operating gallery. Until Städelschule in Frankfurt am Main and a abc. Together they aim to unite progressive hospitality and intergenerational transmission as of his works behave as representing signifiers today, EXILE has hosted over 80 solo and Masters in Fine Art at The Glasgow School artists, musicians and curators. The group a means to inhabit but also perform/transform of the medium of the art exhibition itself, group exhibitions which have been reviewed of Art. He recently took part of CuratorLab is committed to promote new ideas and to history. In her work she reflects on human oscillating between the disarming of symbols extensively in relevant publications around at Konstfack Stockholm, a curatorial course develop the values of the cultural heritage. relationships and how to create and re-create of colonialism and alienation.
    [Show full text]
  • Required Sensitivity to Search the Neutrinoless Double Beta Decay in 124Sn
    Required sensitivity to search the neutrinoless double beta decay in 124Sn Manoj Kumar Singh,1;2∗ Lakhwinder Singh,1;2 Vivek Sharma,1;2 Manoj Kumar Singh,1 Abhishek Kumar,1 Akash Pandey,1 Venktesh Singh,1∗ Henry Tsz-King Wong2 1 Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India. 2 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. E-mail: ∗ manojsingh.physics@gmail.com E-mail: ∗ venkaz@yahoo.com Abstract. The INdias TIN (TIN.TIN) detector is under development in the search for neutrinoless double-β decay (0νββ) using 90% enriched 124Sn isotope as the target mass. This detector will be housed in the upcoming underground facility of the India based Neutrino Observatory. We present the most important experimental parameters that would be used in the study of required sensitivity for the TIN.TIN experiment to probe the neutrino mass hierarchy. The sensitivity of the TIN.TIN detector in the presence of sole two neutrino double-β decay (2νββ) decay background is studied at various energy resolutions. The most optimistic and pessimistic scenario to probe the neutrino mass hierarchy at 3σ sensitivity level and 90% C.L. is also discussed. Keywords: Double Beta Decay, Nuclear Matrix Element, Neutrino Mass Hierarchy. arXiv:1802.04484v2 [hep-ph] 25 Oct 2018 PACS numbers: 12.60.Fr, 11.15.Ex, 23.40-s, 14.60.Pq Required sensitivity to search the neutrinoless double beta decay in 124Sn 2 1. Introduction Neutrinoless double-β decay (0νββ) is an interesting venue to look for the most important question whether neutrinos have Majorana or Dirac nature.
    [Show full text]
  • The Germanium Detector Array for the Search of Neutrinoless Double Beta Decay of 76Ge
    Colloquium on particle physics, astrophysics and cosmology 22 November 2004 GERDA The GERmanium Detector Array for the search of neutrinoless double beta decay of 76Ge Bernhard Schwingenheuer, Max-Planck-Insitut Kernphysik, Heidelberg Outline o Physics Motivation o Nuclear Matrix Elements oPast 76Ge Experiments o The GERDA Approach o Our Friends: the Competition oSummary GERDA Collaboration INFN LNGS, Assergi, Italy INR, Moscow, Russia A.Di Vacri, M. Junker, M. Laubenstein, C. Tomei, L. Pandola I. Barabanov, L. Bezrukov, A. Gangapshev, V. Gurentsov, V. Kusminov, E. Yanovich JINR Dubna, Russia ITEP Physics, Moscow, Russia S. Belogurov,V. Brudanin, V. Egorov, K. Gusev, S. Katulina, V.P. Bolotsky, E. Demidova, I.V. Kirpichnikov, A.A. A. Klimenko, O. Kochetov, I. Nemchenok, V. Vasenko, V.N. Kornoukhov Sandukovsky, A. Smolnikov, J. Yurkowski, S. Vasiliev, Kurchatov Institute, Moscow, Russia MPIK, Heidelberg, Germany A.M. Bakalyarov, S.T. Belyaev, M.V. Chirchenko, G.Y. C. Bauer, O. Chkvorets, W. Hampel, G. Heusser, W. Grigoriev, L.V. Inzhechik, V.I. Lebedev, A.V. Tikhomirov, Hofmann, J. Kiko, K.T. Knöpfle, P. Peiffer, S. S.V. Zhukov Schönert, J. Schreiner, B. Schwingenheuer, H. Simgen, G. Zuzel MPI Physik, München, Germany I. Abt, M. Altmann, C. Bűttner. A. Caldwell, R. Kotthaus, X. Univ. Köln, Germany Liu, H.-G. Moser, R.H. Richter J. Eberth, D. Weisshaar Univ. di Padova e INFN, Padova, Italy Jagiellonian University, Krakow, Poland A. Bettini, E. Farnea, C. Rossi Alvarez, C.A. Ur M.Wojcik Univ. Tübingen, Germany Univ. di Milano Bicocca e INFN, Milano, Italy M. Bauer, H. Clement, J. Jochum, S. Scholl, K.
    [Show full text]
  • The Counselor
    Volume 86 - Issue 8 November 1, 2013 and said that she never wanted to grow up. Of course, Spangler became aware of her body as she grew a little Embracing the strange older, but she has still kept some of her childlike whimsy. Katie Petts said that she would compare Spangler to someone like Jack Sparrow. “She’s the odd character that everyone loves,” Petts said. But, frankly, not everyone loves Spangler. Some make statements such as, “She’s off in her own little world singing songs. I can’t connect with her,” or “I just want to tell her that she is not making the world better by being so obnoxious,” or “I don’t get her at all, nor do I want to.” It’s not as if her strangeness goes away when one gets to know her. Actually, the more one knows her, the stranger she seems. A good place to begin the search for evidence of this deeper strangeness, is in her room. Spangler’s room hosts many oddities. Piles of clothing, dishes and books are spewed sporadically on the floor. An assortment of hats she wears daily are stacked unorderly atop her vanity, PHOTO BY TERESA ODERA and a collection of action figures she BY SARAH ODOM decibel with an equally unexplainable “I would compare her to Lady Gaga,” plans to display are in an open box near The screen at the front of the chapel color that is both bright and dark at Jeanie Fairchild, an acquaintance of her window. In the corner, there is a shows lyrics to worship songs that the same time.
    [Show full text]
  • Fans Get Backstage Pass to Arcade Fire with the Reflektor Tapes in Cineplex Theatres
    FOR IMMEDIATE RELEASE Fans get backstage pass to Arcade Fire with The Reflektor Tapes in Cineplex Theatres Cineplex’s Music at the Movies series continues with Arcade Fire, Roger Waters docs, and live performances from Eric Clapton and The Who. TORONTO, ON – August 27, 2015 – Canadian indie-rock legends Arcade Fire are playing at a Cineplex theatre near you when the all-access documentary The Reflektor Tapes hits the big screen on September 23, 2015, after its world premiere at the Toronto International Film Festival. In support of Reflektor, Arcade Fire’s acclaimed fourth album, the Grammy-winning Canadian band toured the globe, selling out stadiums and headlining major music festivals including Coachella and Glastonbury. Now, fans can experience first-hand what it’s like to go on tour with the band. The Reflektor Tapes takes audiences into the hearts and minds of Arcade Fire, one of today’s most renowned and influential bands. From Sundance Grand Jury Prize-winning director Kahlil Joseph (Until The Quiet Comes), the film charts the band’s creative journey from Jamaica, where they laid the foundation for their Reflektor album, to arena shows in Los Angeles and London via an impromptu performance in a Haitian hotel. “Arcade Fire is one of today’s most respected and critically-acclaimed rock bands, making The Reflektor Tapes a great addition to our Music at the Movies series,” said Pat Marshall, Vice President, Communications and Investor Relations, Cineplex Entertainment. “We’re proud to present Canadian movie-goers with the opportunity to see this documentary about such a well-loved homegrown band.” The Reflektor Tapes will screen as part of Cineplex Front Row Centre Events on September 23, 2015, with a second showing in Cineplex theatres on September 28, 2015.
    [Show full text]
  • GERDA: Germanium Detector Array Searching for 0Νββ Decay Gedet: Germanium Detector R&D
    GERDA: GERmanium Detector Array searching for 0νββ decay GeDet: Germanium Detector R&D Director: Allen Caldwell Projector leaders: Béla Majorovits (GERDA), Iris Abt (GeDet) Postdoc: Josef Janicsko, Xiang Liu, Jens Schubert Ph.D.: Manuela Jelen, Kevin Kröninger(graduated 07/07), Daniel Lenz, Jing Liu Group engineer: Franz Stelzer Diplomand: Markus Kästle Werkstudenten/in: Golam Dastagir, Westa Domanova, Maximilian Empl, Daniel Greenwald, Andreas Kaiser Construction: Karlheinz Ackermann, Stefan Mayer, Sven Voggt Many thanks to colleagues from electronic & mechanic departments! Project Review 17/12/2007 Neutrino masses & mixing parameters 2 ν ν3 2 ν1 Mass 2 e Δm 32 μ ν τ 2 2 Δm 21 ν1 ν3 normal (NH) inverted (IH) 0 2 -3 2 atmospheric accelerator Æ Δm 32 = 2.2•10 eV 2 -5 2 solar reactor Æ Δm 21 = 8.1•10 eV absolute mass NH or IH Dirac or Majorana(ν=ν) page 2 0νββ decay Æ effective Majorana neutrino mass mββ np W- (A,Z) Æ (A, Z+2) + 2e- e- νL ΔL ≠0 e- νR happens, if ν=ν& mν>0 W- n p 2 2 −1 2 GT gV F half life []T1/2 = G( Q,Z)⋅ M − 2 M ⋅ mββ gA Phase space nuclear matrix element effective mass mββ 2 2 2 2 i(α2 −α1) i(−α1−2δ) mββ = ∑mjUej = m1 ⋅ Ue1 +m2 ⋅ Ue2 e +m3 ⋅ Ue3 e j page 3 Measure T1/2 of 0νββ decay npnp W- - e- e ν L ν - e- νR e W- ν n p n p 0νββ 2νββ: (A,Z) Æ (A,Z+2) +2e-+2ν search for energy peak at Q value (Ge76: 2039keV) page 4 0νββ experiments 21 Experiment Underground Isotope T1/2 [10 y] <mee> [eV] (selected) Laboratory Elegant VI Oto (Japan) 48Ca > 95 < 7.2 - 44.7 Heidelberg- Gran Sasso 76Ge >19000 < 0.35 - 1.2 Moscow (Italy)
    [Show full text]
  • Songs by Artist 08/29/21
    Songs by Artist 09/24/21 As Sung By Song Title Track # Alexander’s Ragtime Band DK−M02−244 All Of Me PM−XK−10−08 Aloha ’Oe SC−2419−04 Alphabet Song KV−354−96 Amazing Grace DK−M02−722 KV−354−80 America (My Country, ’Tis Of Thee) ASK−PAT−01 America The Beautiful ASK−PAT−02 Anchors Aweigh ASK−PAT−03 Angelitos Negros {Spanish} MM−6166−13 Au Clair De La Lune {French} KV−355−68 Auld Lang Syne SC−2430−07 LP−203−A−01 DK−M02−260 THMX−01−03 Auprès De Ma Blonde {French} KV−355−79 Autumn Leaves SBI−G208−41 Baby Face LP−203−B−07 Beer Barrel Polka (Roll Out The Barrel) DK−3070−13 MM−6189−07 Beyond The Sunset DK−77−16 Bill Bailey, Won’t You Please Come Home? DK−M02−240 CB−5039−3−13 B−I−N−G−O CB−DEMO−12 Caisson Song ASK−PAT−05 Clementine DK−M02−234 Come Rain Or Come Shine SAVP−37−06 Cotton Fields DK−2034−04 Cry Like A Baby LAS−06−B−06 Crying In The Rain LAS−06−B−09 Danny Boy DK−M02−704 DK−70−16 CB−5039−2−15 Day By Day DK−77−13 Deep In The Heart Of Texas DK−M02−245 Dixie DK−2034−05 ASK−PAT−06 Do Your Ears Hang Low PM−XK−04−07 Down By The Riverside DK−3070−11 Down In My Heart CB−5039−2−06 Down In The Valley CB−5039−2−01 For He’s A Jolly Good Fellow CB−5039−2−07 Frère Jacques {English−French} CB−E9−30−01 Girl From Ipanema PM−XK−10−04 God Save The Queen KV−355−72 Green Grass Grows PM−XK−04−06 − 1 − Songs by Artist 09/24/21 As Sung By Song Title Track # Greensleeves DK−M02−235 KV−355−67 Happy Birthday To You DK−M02−706 CB−5039−2−03 SAVP−01−19 Happy Days Are Here Again CB−5039−1−01 Hava Nagilah {Hebrew−English} MM−6110−06 He’s Got The Whole World In His Hands
    [Show full text]
  • In-Situ Gamma-Ray Background Measurements for Next Generation CDEX Experiment in the China Jinping Underground Laboratory a a a a ∗ a a A,B a H
    In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping Underground Laboratory a a a a < a a a,b a H. Ma , Z. She , W. H. Zeng , Z. Zeng , , M. K. Jing , Q. Yue , J. P. Cheng , J. L. Li and a H. Zhang aKey Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 bCollege of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 ARTICLEINFO ABSTRACT Keywords: In-situ -ray measurements were performed using a portable high purity germanium spectrometer in In-situ -ray measurements Hall-C at the second phase of the China Jinping Underground Laboratory (CJPL-II) to characterise Environmental radioactivity the environmental radioactivity background below 3 MeV and provide ambient -ray background Underground laboratory parameters for next generation of China Dark Matter Experiment (CDEX). The integral count rate Rare event physics of the spectrum was 46.8 cps in the energy range of 60 to 2700 keV. Detection efficiencies of the CJPL spectrometer corresponding to concrete walls and surrounding air were obtained from numerical calculation and Monte Carlo simulation, respectively. The radioactivity concentrations of the walls 238 232 in the Hall-C were calculated to be 6:8 , 1:5 Bq/kg for U, 5:4 , 0:6 Bq/kg for Th, 81:9 , 14:3 40 Bq/kg for K. Based on the measurement results, the expected background rates from these primordial radionuclides of future CDEX experiment were simulated in unit of counts per keV per ton per year (cpkty) for the energy ranges of 2 to 4 keV and around 2 MeV.
    [Show full text]
  • Current and Future Neutrino Experiments
    Current and future neutrino experiments Justyna Łagoda XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics Plan ● short introduction ● non-oscillation experiments – neutrino mass measurements – search for neutrinoless double beta decay ● oscillation experiments – reactor neutrinos – solar neutrinos – atmospheric neutrinos – long baseline experiments – search for sterile neutrinos ● summary 2 Neutrino mixing ● mixing matrix for 3 active flavours −i δ c 0 s e CP 2 additional 1 0 0 13 13 c12 s12 0 phases if νe ν1 ν = 0 c s ⋅ 0 1 0 ⋅ −s c 0 ⋅ ν neutrinos are μ 23 23 12 12 2 Majorana i δ (ντ) CP ν ( 3) particles 0 −s23 c23 −s e 0 c ( 0 0 1) ( )( 13 13 ) ● 3 mixing angles θ12, θ13, θ23, CP violation phase δCP L L P =δ −4 ℜ(U * U U U * )sin2 Δm2 ±2 ℑ(U * U U U * )sin2 Δm2 να →νβ αβ ∑ αi βi α j β j ij ∑ αi βi α j β j ij i>j 4 E i>j 4 E ● 2 2 2 2 2 2 2 independent mass splittings: Δm 21= m 2–m 1, Δm 32 = m 3–m 2, ● 2 “controlled” parameters: baseline L and neutrino energy E ● the presence of matter (electrons) modifies the mixing – energy levels of propagating eigenstates are altered for νe component (different interaction potentials in kinetic part of the hamiltonian) – matter effects are sensitive to ordering of mass eigenstates 3 Known and unknown ● neutrino properties are measured using neutrinos from various sources in various processes and detection techniques −i δ i α /2 c 0 s e CP 1 mixing 1 0 0 13 13 c12 s12 0 e 0 0 i α 2/ 2 parameters: 0 c23 s23 0 1 0 −s12 c12 0 0 e 0 i δCP oscillation 0 −s23 c23 −s e 0 c ( 0 0 1)( 0
    [Show full text]
  • Arxiv:1509.08702V2 [Physics.Ins-Det] 4 Apr 2016 Be Neutron-Quiet and Suitable for Deployment of the COHERENT Detector Suite
    The COHERENT Experiment at the Spallation Neutron Source D. Akimov,1, 2 P. An,3 C. Awe,4, 3 P.S. Barbeau,4, 3 P. Barton,5 B. Becker,6 V. Belov,1, 2 A. Bolozdynya,2 A. Burenkov,1, 2 B. Cabrera-Palmer,7 J.I. Collar,8 R.J. Cooper,5 R.L. Cooper,9 C. Cuesta,10 D. Dean,11 J. Detwiler,10 A.G. Dolgolenko,1 Y. Efremenko,2, 6 S.R. Elliott,12 A. Etenko,13, 2 N. Fields,8 W. Fox,14 A. Galindo-Uribarri,11, 6 M. Green,15 M. Heath,14 S. Hedges,4, 3 D. Hornback,11 E.B. Iverson,11 L. Kaufman,14 S.R. Klein,5 A. Khromov,2 A. Konovalov,1, 2 A. Kovalenko,1, 2 A. Kumpan,2 C. Leadbetter,3 L. Li,4, 3 W. Lu,11 Y. Melikyan,2 D. Markoff,16, 3 K. Miller,4, 3 M. Middlebrook,11 P. Mueller,11 P. Naumov,2 J. Newby,11 D. Parno,10 S. Penttila,11 G. Perumpilly,8 D. Radford,11 H. Ray,17 J. Raybern,4, 3 D. Reyna,7 G.C. Rich∗,3 D. Rimal,17 D. Rudik,1, 2 K. Scholbergy,4, z B. Scholz,8 W.M. Snow,14 V. Sosnovtsev,2 A. Shakirov,2 S. Suchyta,18 B. Suh,4, 3 R. Tayloe,14 R.T. Thornton,14 I. Tolstukhin,2 K. Vetter,18, 5 and C.H. Yu11 1SSC RF Institute for Theoretical and Experimental Physics of National Research Centre \Kurchatov Institute", Moscow, 117218, Russian Federation 2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409, Russian Federation 3Triangle Universities Nuclear Laboratory, Durham, North Carolina, 27708, USA 4Department of Physics, Duke University, Durham, NC 27708, USA 5Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 6Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA 7Sandia
    [Show full text]
  • IUPAP Report 41A
    IUPAP Report 41a A Report on Deep Underground Research Facilities Worldwide (updated version of August 8, 2018) Table of Contents INTRODUCTION 3 SNOLAB 4 SURF: Sanford Underground Research Facility 10 ANDES: AGUA NEGRA DEEP EXPERIMENT SITE 16 BOULBY UNDERGROUND LABORATORY 18 LSM: LABORATOIRE SOUTERRAIN DE MODANE 21 LSC: LABORATORIO SUBTERRANEO DE CANFRANC 23 LNGS: LABORATORI NAZIONALI DEL GRAN SASSO 26 CALLIO LAB 29 BNO: BAKSAN NEUTRINO OBSERVATORY 34 INO: INDIA BASED NEUTRINO OBSERVATORY 41 CJPL: CHINA JINPING UNDERGROUND LABORATORY 43 Y2L: YANGYANG UNDERGROUND LABORATORY 45 IBS ASTROPHYSICS RESEARCH FACILITY 48 KAMIOKA OBSERVATORY 50 SUPL: STAWELL UNDERGROUND PHYSICS LABORATORY 53 - 2 - __________________________________________________INTRODUCTION LABORATORY ENTRIES BY GEOGRAPHICAL REGION Deep Underground Laboratories and their associated infrastructures are indicated on the following map. These laboratories offer low background radiation for sensitive detection systems with an external users group for research in nuclear physics, astroparticle physics, and dark matter. The individual entries on the Deep Underground Laboratories are primarily the responses obtained through a questionnaire that was circulated. In a few cases, entries were taken from the public information supplied on the lab’s website. The information was provided on a voluntary basis and not all laboratories included in this list have completed construction, as a result, there are some unavoidable gaps. - 3 - ________________________________________________________SNOLAB (CANADA) SNOLAB 1039 Regional Road 24, Creighton Mine #9, Lively ON Canada P3Y 1N2 Telephone: 705-692-7000 Facsimile: 705-692-7001 Email: info@snolab.ca Website: www.snolab.ca Oversight and governance of the SNOLAB facility and the operational management is through the SNOLAB Institute Board of Directors, whose member institutions are Carleton University, Laurentian University, Queen’s University, University of Alberta and the Université de Montréal.
    [Show full text]
  • Quadrophonic News Issue 7
    Major Album Releases In The Fourth Quarter, 2013: Reflektor -Arcade Fire October 29th, 2013 Artpop -Lady Gaga November 11th, 2013 Live on the BBC Vol. 2 -The Beatles November 11th, 2013 •New -Paul McCartney •Beyoncé -Beyoncé •Matangl -M.I.A. •Because The Internet QUADROPHONIC NEWS •Shangri La -Jake Bugg -Childish Gambino Quadrophonic News December 2013 Issue 7 Female Artists: A Reflection In This Month’s Issue: There's a lot to be said for any vocalist with a truly amazing • Album Reviews: Reflektor, Yeezus, Centipede Hz, voice, but there's undeniably something special about a woman with a MMLP2, Live Through This, Bleach, Night Time, powerful voice and monumental skill in writing. So in this article I hope My Time to pay tribute to some of the best female vocalists/song writers out there. It's a big category so, unfortunately I won't be able to get to every one • Insight On Famous Female Artists I’d like to, but I hope to cover three of my favorites. • December/January Music Event Calendar First up is Patty Griffin. Patty is a powerful song writer from Old Town, Maine. her musical style is hard to pin down but it lands somewhere between folk and rock. Her voice is one of incredible range, Arcade Fire’s Reflektor Review her voice can convey every emotion you can imagine, softly or loudly, Achtung Baby. OK Computer. Sound of Silver. sweetly or harshly, and this amazing voice is accompanied by her Elephant. All of these albums are special. You remember indomitable talent for song writing.
    [Show full text]