Adrian-Kalchhauser et al / Understanding NGI: Insights from Molecular-Evolutionary Crosstalk / EcoEvoRxiv 20200501 Understanding 'Non-genetic' Inheritance: Insights from Molecular-Evolutionary Crosstalk Irene Adrian-Kalchhauser1, Sonia E. Sultan2, Lisa Shama3, Helen Spence-Jones4, Stefano Tiso5, Claudia Isabelle Keller Valsecchi6, Franz J. Weissing5 Addresses 1Centre for Fish and Wildlife Health, Department for Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland 2Biology Department, Wesleyan University, Middletown CT 06459 USA 3Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, Hafenstrasse 43, 25992 List, Germany 4Centre for Biological Diversity, School of Biology, University of St Andrews, UK 5Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands 6Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany Corresponding author: Adrian-Kalchhauser, I. (
[email protected]) Keywords epigenetics, epiallelic variation, methylation, transgenerational effects, inherited gene regulation, gene regulatory network model Abstract Understanding the evolutionary and ecological roles of 'non-genetic' inheritance is daunting due to the complexity and diversity of epigenetic mechanisms. We draw on precise insights from molecular structures and events to identify three general features of 'non-genetic' inheritance systems that are central to broader investigations: (i) they are functionally interdependent with, rather than separate from, DNA sequence; (ii) each of these mechanisms is not uniform but instead varies phylogenetically and operationally; and (iii) epigenetic elements are probabilistic, interactive regulatory factors and not deterministic 'epi-alleles' with defined genomic locations and effects. We explain each feature and offer research recommendations.