Pluggable Authentication Modules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Version 7.8-Systemd
Linux From Scratch Version 7.8-systemd Created by Gerard Beekmans Edited by Douglas R. Reno Linux From Scratch: Version 7.8-systemd by Created by Gerard Beekmans and Edited by Douglas R. Reno Copyright © 1999-2015 Gerard Beekmans Copyright © 1999-2015, Gerard Beekmans All rights reserved. This book is licensed under a Creative Commons License. Computer instructions may be extracted from the book under the MIT License. Linux® is a registered trademark of Linus Torvalds. Linux From Scratch - Version 7.8-systemd Table of Contents Preface .......................................................................................................................................................................... vii i. Foreword ............................................................................................................................................................. vii ii. Audience ............................................................................................................................................................ vii iii. LFS Target Architectures ................................................................................................................................ viii iv. LFS and Standards ............................................................................................................................................ ix v. Rationale for Packages in the Book .................................................................................................................... x vi. Prerequisites -
Mysql NDB Cluster 7.5.16 (And Later)
Licensing Information User Manual MySQL NDB Cluster 7.5.16 (and later) Table of Contents Licensing Information .......................................................................................................................... 2 Licenses for Third-Party Components .................................................................................................. 3 ANTLR 3 .................................................................................................................................... 3 argparse .................................................................................................................................... 4 AWS SDK for C++ ..................................................................................................................... 5 Boost Library ............................................................................................................................ 10 Corosync .................................................................................................................................. 11 Cyrus SASL ............................................................................................................................. 11 dtoa.c ....................................................................................................................................... 12 Editline Library (libedit) ............................................................................................................. 12 Facebook Fast Checksum Patch .............................................................................................. -
Strong Distributed Authentication Architecture for UNIX Ashwin Ganti
University of Illinois at Chicago Strong Distributed Authentication Architecture for UNIX by Ashwin Ganti A PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE in COMPUTER SCIENCE Approved, MASTERS PROJECT COMMITTEE Jon Solworth, Adviser Associate Professor of Computer Science V.N. Venkatakrishnan Assistant Professor of Computer Science Chicago, Illinois December, 2007 This project is dedicated to my family. Acknowledgments I would like to thank my adviser Jon Solworth for his invaluable guidance throughout the course of the research for this project and for having been most patient and supportive of me during the entire duration of my time in graduate school. Ashwin 2 Contents 1 Introduction 7 2 Overview of the Frameworks used 9 2.1 PAM........................................ 10 2.2 Name Service Module . 11 2.3 IPSec . 12 3 System Design 12 3.1 Statics . 12 3.1.1 Modules of the system . 12 3.1.2 Relation between the Modules . 13 3.1.3 SayAnything Certificates Used . 13 3.1.4 Relation between certificates . 15 3.2 Dynamics - Logical Flow . 17 4 System Internals 18 4.1 pam sayAnything . 18 4.2 nss sayAnything . 18 4.2.1 getpwuid (uid t uid) . 19 4.2.2 getpwnam (char* name) . 20 4.2.3 setpwent (void) . 20 4.2.4 getpwent (void) . 20 4.2.5 endpwent (void) . 21 4.3 sayAnything Agent . 21 4.3.1 Overview . 22 4.3.2 Logical Flow . 22 4.4 Certificate Server . 24 3 4.4.1 Add Certificate . 24 4.4.2 Get Certificate . 24 5 System Administration 25 5.1 pam sayAnything . -
Kerberos: an Authentication Service for Computer Networks by Clifford Neuman and Theodore Ts’O
Kerberos: An Authentication Service for Computer Networks by Clifford Neuman and Theodore Ts’o Presented by: Smitha Sundareswaran Chi Tsong Su Introduction z Kerberos: An authentication protocol based on cryptography z Designed at MIT under project Athena z Variation of Needham Schroeder protocol - Difference: Kerberos assumes all systems on the network to be synchronized z Similar function as its mythological namesake: “guards” the access to network protocols Contribution z Defines ideas of authentication, Integrity, confidentiality and Authorization z Working of Kerberos z Limitations z Utilities z How to obtain and use Kerberos z Other methods to improve security Why Kerberos? z Foils threats due to eavesdropping z More convenient than password based authentication { Allows user to avoid “authentication by assertion” z Authentication based on cryptography: attacker can’t impersonate a valid user How Kerberos Works z Distributed authentication service using a series of encrypted messages {Password doesn’t pass through the network z Timestamps to reduce the number of messages needed for authentication z “Ticket granting Service” for subsequent authentication Kerberos Authentication and Encryption zAuthentication proves that a client is running on behalf of a particular user zUses encryption key for authentication {Encryption key = Password zEncryption implemented using DES {Checksum included in message checksum and encryption provide integrity & confidentiality The Kerberos Ticket z Initially, client and Server don’t share an encryption -
Feature Description
NTLM Feature Description UPDATED: 19 March 2021 NTLM Copyright Notices Copyright © 2002-2021 Kemp Technologies, Inc. All rights reserved. Kemp Technologies and the Kemp Technologies logo are registered trademarks of Kemp Technologies, Inc. Kemp Technologies, Inc. reserves all ownership rights for the LoadMaster and Kemp 360 product line including software and documentation. Used, under license, U.S. Patent Nos. 6,473,802, 6,374,300, 8,392,563, 8,103,770, 7,831,712, 7,606,912, 7,346,695, 7,287,084 and 6,970,933 kemp.ax 2 Copyright 2002-2021, Kemp Technologies, All Rights Reserved NTLM Table of Contents 1 Introduction 4 1.1 Document Purpose 6 1.2 Intended Audience 6 1.3 Related Firmware Version 6 2 Configure NTLM Authentication 7 2.1 Configure Internet Options on the Client Machine 7 2.2 Configure the LoadMaster 11 2.2.1 Enable NTLM Proxy Mode 13 2.2.2 Configure the Server Side SSO Domain 13 2.2.3 Configure the Client Side SSO Domain 15 2.2.4 Configure the Virtual Service 15 2.3 Configure Firefox to Allow NTLM (if needed) 17 2.4 Troubleshooting 18 References 19 Last Updated Date 20 kemp.ax 3 Copyright 2002-2021, Kemp Technologies, All Rights Reserved NTLM 1 Introduction 1 Introduction NT LAN Manager (NTLM) is a Windows Challenge/Response authentication protocol that is often used on networks that include systems running the Windows operating system and Active Directory. Kerberos authentication adds greater security than NTLM systems on a network and provides Windows-based systems with an integrated single sign-on (SSO) mechanism. -
OK: Oauth 2.0 Interface for the Kerberos V5 Authentication Protocol
OK: OAuth 2.0 interface for the Kerberos V5 Authentication Protocol James Max Kanter Bennett Cyphers Bruno Faviero John Peebles [email protected] [email protected] [email protected] [email protected] 1. Problem Kerberos is a powerful, convenient framework for user authentication and authorization. Within MIT, Kerberos is used with many online institute services to verify users as part of Project Athena. However, it can be difficult for developers unfamiliar with Kerberos development to take advantage of its resources for use in third-party apps. OAuth 2.0 is an open source protocol used across the web for secure delegated access to resources on a server. Designed to be developer-friendly, OAuth is the de facto standard for authenticating users across sites, and is used by services including Google, Facebook, and Twitter. Our goal with OK Server is to provide an easy way for developers to access third-party services using Kerberos via OAuth. The benefits of this are twofold: developers can rely on an external service for user identification and verification, and users only have to trust a single centralized server with their credentials. Additionally, developers can request access to a subset of Kerberos services on behalf of a user. 2. Implementation overview Our system is composed of two main components: a server (the Kerberos client) to retrieve and process tickets from the MIT KDC, and an OAuth interface (the OAuth server) to interact with a client app (the app) wishing to make use of Kerberos authentication. When using our system, a client application uses the OAuth protocol to get Kerberos service tickets for a particular user. -
Chapter 15-70-411FINAL[1]
Lesson 15: Configuring Service Authentication MOAC 70-411: Administering Windows Server 2012 Overview • Exam Objective 5.1: Configure Service Authentication • Configuring Service Authentication • Managing Service Accounts © 2013 John Wiley & Sons, Inc. 2 Configuring Service Authentication Lesson 15: Configuring Service Authentication © 2013 John Wiley & Sons, Inc. 3 Authentication • Authentication is the act of confirming the identity of a user or system and is an essential part used in authorization when the user or system tries to access a server or network resource. • Two types of authentication that Windows supports are NT LAN Manager (NTLM) and Kerberos. • Kerberos is the default authentication protocol for domain computers. • NTLM is the default authentication protocol for Windows NT, standalone computers that are not part of a domain, and situations in which you authenticate to a server using an IP address. © 2013 John Wiley & Sons, Inc. 4 Understanding NTLM Authentication • NT LAN Manager (NTLM) is a suite of Microsoft security protocols that provides authentication, integrity, and confidentiality to users. • NTLM is an integrated single sign-on mechanism. • NTLM uses a challenge-response mechanism for authentication in which clients are able to prove their identities without sending a password to the server. © 2013 John Wiley & Sons, Inc. 5 Managing Kerberos Kerberos: • Is a computer network authentication protocol, which allows hosts to prove their identity over a non-secure network in a secure manner. • Can provide mutual authentication -
Security and Performance of Single Sign-On Based on One-Time Pad Algorithm
cryptography Article Security and Performance of Single Sign-On Based on One-Time Pad Algorithm Maki Kihara *,†,‡ and Satoshi Iriyama ‡ Department of Information Science, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan; [email protected] * Correspondence: [email protected] † Research Fellow of Japan Society for the Promotion of Science. ‡ These authors contributed equally to this work. Received: 13 April 2020; Accepted: 9 June 2020; Published: 12 June 2020 Abstract: Single sign-on (SSO) techniques allow access control for multiple systems with a single login. The aim of our study is to construct an authentication algorithm that provides the authentication information of a user to a requester without requiring any specific token, thereby achieving domain-free access control. In this study, we propose an authentication algorithm for SSO based on a verifiable encryption (VE)-based authentication algorithm and implementation. VE is a kind of cryptosystem that allows calculation on cyphertexts, generating an encrypted result, which matches the distance between two plaintexts when decrypting. In our approach, we first construct the mathematical SSO algorithm based on the VE-based algorithm, and then implement the algorithm by applying the one-time pad to the algorithm and using sample data. We also consider robustness against theoretical attacks such as man-in-the-middle attack. In addition to that, our algorithm is robust against the well-known classical and theoretical attacks, the man-in-the-middle attack against the proposed algorithm is also impracticable. Furthermore, with security analysis using Proverif, the algorithm has been shown to be secure. The execution speed is less than 1 ms even with a text length of 8192 bits. -
IT Acronyms.Docx
List of computing and IT abbreviations /.—Slashdot 1GL—First-Generation Programming Language 1NF—First Normal Form 10B2—10BASE-2 10B5—10BASE-5 10B-F—10BASE-F 10B-FB—10BASE-FB 10B-FL—10BASE-FL 10B-FP—10BASE-FP 10B-T—10BASE-T 100B-FX—100BASE-FX 100B-T—100BASE-T 100B-TX—100BASE-TX 100BVG—100BASE-VG 286—Intel 80286 processor 2B1Q—2 Binary 1 Quaternary 2GL—Second-Generation Programming Language 2NF—Second Normal Form 3GL—Third-Generation Programming Language 3NF—Third Normal Form 386—Intel 80386 processor 1 486—Intel 80486 processor 4B5BLF—4 Byte 5 Byte Local Fiber 4GL—Fourth-Generation Programming Language 4NF—Fourth Normal Form 5GL—Fifth-Generation Programming Language 5NF—Fifth Normal Form 6NF—Sixth Normal Form 8B10BLF—8 Byte 10 Byte Local Fiber A AAT—Average Access Time AA—Anti-Aliasing AAA—Authentication Authorization, Accounting AABB—Axis Aligned Bounding Box AAC—Advanced Audio Coding AAL—ATM Adaptation Layer AALC—ATM Adaptation Layer Connection AARP—AppleTalk Address Resolution Protocol ABCL—Actor-Based Concurrent Language ABI—Application Binary Interface ABM—Asynchronous Balanced Mode ABR—Area Border Router ABR—Auto Baud-Rate detection ABR—Available Bitrate 2 ABR—Average Bitrate AC—Acoustic Coupler AC—Alternating Current ACD—Automatic Call Distributor ACE—Advanced Computing Environment ACF NCP—Advanced Communications Function—Network Control Program ACID—Atomicity Consistency Isolation Durability ACK—ACKnowledgement ACK—Amsterdam Compiler Kit ACL—Access Control List ACL—Active Current -
Implementing Infiniband on IBM System P
Front cover Implementing InfiniBand on IBM System p Understanding and exploiting InfiniBand HPC and commercial solution explored AIX 5L V5.3 and SLES 9 implementation Dino Quintero Norbert Conrad Rob Desjarlais Marc-Eric Kahle Jung-Hoon Kim Hoang-Nam Nguyen Tony Pirraglia Fernando Pizzano Robert Simon Shi Lei Yao Octavian Lascu ibm.com/redbooks International Technical Support Organization Implementing InfiniBand on IBM System p September 2007 SG24-7351-00 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. First Edition (September 2007) This edition applies to Version 5, Release 3, Modification 4, APAR IY84006 of AIX 5L, of SUSE LINUX Enterprise Server 9 for POWER Service Pack 3, SLES 9 SP3 and Release 6, Version 1.0 and APAR MB01795 of the Hardware Management Console (HMC). © Copyright International Business Machines Corporation 2007. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . x Preface . xi The team that wrote this book . xi Become a published author . xiv Comments welcome. xv Part 1. InfiniBand architecture. 1 Chapter 1. Introduction. 3 1.1 Introduction to InfiniBand. 4 Chapter 2. Introduction to InfiniBand technology . 7 2.1 A technical introduction to InfiniBand . 9 2.2 Markets . 10 2.3 Application clustering . 11 2.4 I/O architectures: fabric versus bus. 12 2.4.1 Shared bus architecture . 13 2.4.2 New interconnects compliment InfiniBand . 13 2.4.3 Bandwidth out of the box. 14 2.5 InfiniBand technical overview . -
Bsdcan 2015 UCL Working Group
BSDCan 2015 UCL Working Group [email protected] Overview The goal of this working group is to develop a template for all future configuration files that is both human readable and writable, but is also hierarchical, expressive, and programmatically editable. Agenda ● Opening: What is UCL ● Presentation of work in progress: converting newsyslog and bhyve to UCL ● Discuss common requirements for configuration files ● Develop a common set of grammar/keys to work across all configuration files ('enabled' activates/deactivates each block, allows disabling default configuration without modifying the default files, ala pkg) Agenda (Continued) ● Discuss layering (/etc/defaults/foo.conf -> /etc/foo.conf -> /etc/foo.conf.d/*.conf -> /usr/local/etc/foo.conf.d/*.conf) ● Discuss required features for management utilities (uclcmd) ● Identify additional targets to UCL-ify ● Develop a universal API for using libucl in various applications, simplify loading configuration into C structs (libfigpar?) What is the Universal Configuration Language? ● Inspired by bind/nginx style configuration ● Fully compatible with JSON, but more liberal in what it accepts, so users do not have to write strict JSON ● Can Output UCL, JSON, or YAML ● Supports handy suffixes like k, mb, min, d ● Can be as simple or as complex as required ● Allows inline comments (# and /* multiline */) ● Validation and Schema support ● Supports includes, macros, and variables Why UCL is great -- all of this is valid param = value; key = “value”; flag = true; section { number = 10k string -
Security Guide
Fedora 19 Security Guide A Guide to Securing Fedora Linux Johnray Fuller John Ha David O'Brien Scott Radvan Eric Christensen Adam Ligas Murray McAllister Scott Radvan Daniel Walsh Security Guide Dominick Grift Eric Paris James Morris Fedora 19 Security Guide A Guide to Securing Fedora Linux Edition 19.1 Author Johnray Fuller [email protected] Author John Ha [email protected] Author David O'Brien [email protected] Author Scott Radvan [email protected] Author Eric Christensen [email protected] Author Adam Ligas [email protected] Author Murray McAllister [email protected] Author Scott Radvan [email protected] Author Daniel Walsh [email protected] Author Dominick Grift [email protected] Author Eric Paris [email protected] Author James Morris [email protected] Copyright © 2007-2013 Fedora Project Contributors. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.