Swanslake Eolaof

Total Page:16

File Type:pdf, Size:1020Kb

Swanslake Eolaof OUR LAKE EOLA SWANS ARE ON THE careFUL DIETS SWANSLAKE EOLA OF NO BREAD OR POPCORN Feeding them with the wrong food can make them sick. Please use one of the three feeders in the park to purchase the correct food for the swans. Feeders are located near the playground and near the Ting Pavilion. OTHER APPROVED FOODS: · Lettuce · Any loose field greens · Spinach leaves · Duck pellet food that can be bought at any pet/feed store THE SWANS OF LAKE EOLA City of Orlando Families, Parks and Recreation Lake Eola Park 195 N. Rosalind Avenue A guide describing the different Orlando, Florida 32801 swan breeds at Lake Eola 407-246-4485 cityoforlando.net/eola find us on facebook TrumpeTER SWANS WHOOPER SWANS BLACK NECK SWAN (Cygnus buccinator) Trumpeter Swans are indigenous (Cygnus Cygnus) Whooper Swans are the National Bird (Cygnus melancocoryphus) Black Neck Swans are native to North America and are the largest Swan Species. of Finland and can be found wintering in Great Britain, to South America. Southern hemisphere swans have A unique characteristic is their number of feathers – Northern Europe, and Asia Minor. The yellow coloring black coloring while Northern hemisphere swans are 25,000. This is the most feathers of any bird species. extends past their nostrils which helps identify them white in color. The pink feet of Black Neck swans are set They are identified by their coal black beaks. from the Bewick swans (a type of Tundra Swan). Most further back making it very awkward for them to walk on swans usually mate for life, but the Whooper Swans have land. Therefore these swans stay primarily in the water. a 6% divorce rate. F O AUSTRALIAN ANS BLACK SWANS ROYAL MUTE SWANS OLA (Cygnus atratus) is a large water bird, a species of (Cygnus olor) is a species of swan, and thus a member swan, which breeds mainly in the southeast and of the duck, goose and swan family Anatidae. It is southwest regions of Australia. The species was hunted native to much of Europe and Asia, and (as a rare E to extinction in New Zealand, but later reintroduced. winter visitor) the far north of Africa. It is also an E Within Australia they are nomadic, with erratic migration introduced species in North America, Australasia SW patterns dependent upon climatic conditions. Black and southern Africa. The name ‘mute’ derives from it E Swans are large birds with mostly black plumage and being less vocal than other swan species Measuring K red bills. They are monogamous breeders that share 125 to 170 centimeters (49 to 67 in) in length, this incubation duties and cygnet rearing between the sexes. large swan is wholly white in plumage with an orange H A bill bordered with black. It is recognizable by its pronounced knob atop the bill. T L TrumpeTER SWANS WHOOPER SWANS BLACK NECK SWAN (Cygnus buccinator) Trumpeter Swans are (Cygnus Cygnus) Whooper Swans are the National (Cygnus melancocoryphus) Black Neck Swans are indigenous to North America and are the largest Bird of Finland and can be found wintering in Great native to South America. Southern hemisphere Swan Species. A unique characteristic is their Britain, Northern Europe, and Asia Minor. The yellow swans have black coloring while Northern number of feathers – 25,000. This is the most coloring extends past their nostrils which helps hemisphere swans are white in color. The pink feet feathers of any bird species. They are identified by identify them from the Bewick swans (a type of of Black Neck swans are set further back making it their coal black beaks. Tundra Swan). Most swans usually mate for life, but very awkward for them to walk on land. Therefore the Whooper Swans have a 6% divorce rate. these swans stay primarily in the water. AUSTRALIAN BLACK SWANS ROYAL MUTE SWANS F O ANS OLA (Cygnus atratus) is a large water bird, a species (Cygnus olor) is a species of swan, and thus a of swan, which breeds mainly in the southeast member of the duck, goose and swan family and southwest regions of Australia. The species Anatidae. It is native to much of Europe and Asia, E was hunted to extinction in New Zealand, but later and (as a rare winter visitor) the far north of Africa. E reintroduced. Within Australia they are nomadic, It is also an introduced species in North America, SW with erratic migration patterns dependent upon Australasia and southern Africa. The name ‘mute’ E climatic conditions. Black Swans are large birds derives from it being less vocal than other swan K with mostly black plumage and red bills. They are species Measuring 125 to 170 centimeters (49 to monogamous breeders that share incubation duties 67 in) in length, this large swan is wholly white in H and cygnet rearing between the sexes. plumage with an orange bill bordered with black. It A is recognizable by its pronounced knob atop the bill. T L.
Recommended publications
  • Bird Report 1999
    YELLOWSTONE BIRD REPORT 1999 Terry McEneaney Yellowstone Center for Resources National Park Service Yellowstone National Park, Wyoming YCR–NR–2000–02 Suggested citation: McEneaney, T. 2000. Yellowstone Bird Report, 1999. National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming, YCR–NR–2000–02. Cover: Special thanks to my wife, Karen McEneaney, for the stunning pencil drawing of a Golden Eagle (Aquila chrysaetos) talon. The Golden Eagle is one of Yellowstone’s most formidable avian predators. When viewing Golden Eagle talons up close, one soon realizes why the bird is a force to be reckoned with in the natural world. Title page: Great Horned Owlet. The photographs in this report are courtesy of Terry McEneaney. ii CONTENTS INTRODUCTION ..................................................................... 5 Bird Impression .............................................................. 20 Weather Patterns and Summary ....................................... 5 National Geographic Field Guide .................................... 21 THREATENED AND ENDANGERED SPECIES .............................. 7 Retirement of Yellowstone Pilot Dave Stradley .............. 21 Peregrine Falcon ............................................................... 7 Yellowstone Birds: Their Ecology and Distribution ....... 21 Bald Eagle ........................................................................ 7 Computerized Database ................................................. 21 Whooping Crane .............................................................
    [Show full text]
  • Air Speeds of Migrating Birds Observed by Ornithodolite and Compared with Predictions from Flight Theory Rsif.Royalsocietypublishing.Org C
    Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory rsif.royalsocietypublishing.org C. J. Pennycuick1, Susanne A˚kesson2 and Anders Hedenstro¨m2 1School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK 2Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, Sweden Research We measured the air speeds of 31 bird species, for which we had body mass Cite this article: Pennycuick CJ, A˚kesson S, and wing measurements, migrating along the east coast of Sweden in Hedenstro¨m A. 2013 Air speeds of migrating autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anem- ometer. We expected each species’ average air speed to exceed its calculated birds observed by ornithodolite and compared minimum-power speed (Vmp), and to fall below its maximum-range speed with predictions from flight theory. J R Soc (Vmr), but found some exceptions to both limits. To resolve these discrepancies, Interface 10: 20130419. we first reduced the assumed induced power factor for all species from 1.2 to http://dx.doi.org/10.1098/rsif.2013.0419 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000–250 000. These results will be used to amend the default values in exist- Received: 8 May 2013 ing software that estimates fuel consumption in migration, energy heights on Accepted: 31 May 2013 arrival and other aspects of flight performance, using classical aeronautical theory.
    [Show full text]
  • 17A a STUDY.Pdf
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 1, January 2014 A STUDY OF AVIFAUNAL DIVERSITY AND INFLUENCES OF WATER QUALITY IN THE UDHAYAMARTHANDAPURAM BIRD SANCTUARY, TIRUVARUR DISTRICT, TAMIL NADU, INDIA V. Ramamurthy1, R. Rajakumar2 Assistant Professor, P.G. and Research Department of Biochemistry, Marudupandiyar College, Thanjavur – 613 403, Tamil Nadu, India1 Assistant Professor, P.G. and Research Department of Biotechnology, Marudupandiyar College, Thanjavur – 613 403, Tamil Nadu, India2 Abstract: The diversity of wetlands is intermediary zones between permanently aquatic and dry terrestrial eco-systems. Wetlands require collaborated research involving natural, social and inter disciplinary studied to understanding the various components such as monitoring of water quality, socio-economic dependency, biodiversity and other activities as an indispensable tool for formulating long term conservation strategies. The physico-chemical parameters of one of the major habitats for birds, the wetlands are known to influence congregation of migratory and resident species of birds. The present study deals with the interactions between these abiotic factors and bird diversity of the Udhayamarthandapuram bird sanctuary, Tamil Nadu, India for a period of August 2011 to March 2012. During these study periods the water birds were grouped into five categories namely diving birds, swimming birds, small waders, large waders and aerial foragers. During each visit waterfowl survey was carried out and water samples were also collected to document the seasons. The variations in bird aggregations as well as physico-chemical factors are discussed. Most of the abiotic factors were significantly influenced for the density, diversity and richness of the water bird groups.
    [Show full text]
  • Free Download! the Trumpeter Swan
    G3647 The Trumpeter Swan by Sumner Matteson, Scott Craven and Donna Compton Snow-white Trumpeter Swans present a truly spectac- Swans of the Midwest ular sight. With a wingspan of more than 7 feet and a rumpeter Swans, along with ducks and geese, belong height of about 4 feet, the Trumpeter Swan (Cygnus buc- to the avian Order Anseriformes, Family Anatidae. cinator) ranks as the largest native waterfowl species in T Trumpeters have broad, flat bills with fine tooth-like North America. serrations along the edges which allow them to strain Because the Trumpeter Swan disappeared as a breed- aquatic plants and water. The birds’ long necks and ing bird in the Midwest, several states have launched strong feet allow them to uproot plants in water up to 4 restoration programs to reintroduce it to the region. This feet deep. publication will provide you with background informa- Most Trumpeter Swans weigh 21–30 pounds, tion on the Trumpeter Swan’s status and life history, and although some males exceed the average weight. The on restoration efforts being conducted in the upper male is called a cob; the female is called a pen; and a swan Midwest. in its first year is called a cygnet or juve- nile. The Trumpeter is often con- fused with the far more common Tundra Swan (formerly Whistling Swan, Cygnus columbianus), the only other native swan found routinely in North America. Tundra Swans can be seen in the upper Trumpeter Swan Midwest only during spring and fall migration. You can distinguish between the two native species most accurately by listening to their calls.
    [Show full text]
  • Commentaries
    COMMENTARIES The Water Repellency of Water-bird Feathers ARIE M. RIJKE• Elowson (1984) analyzed the physico-chemical or, by incorporatingEq. 1: principles involved in the water repellency of textile fabrics.Based partly on measurementsof the feather Ws, = %a (1 + cos 0). (2a) structureof 14 water-bird species,she concludedthat Adam (1956) pointed out that if a surfaceis rough or the "textile model" cannot be applied reliably to porous,large contactangles may causedrops to en- feathers, and does not account for the spread-wing trap air in the hollows and interstices,thereby form- behavioral differencesamong water birds. I present ing additional air-liquid interfaces.This will causea a rebuttal to Elowson's critique centering on three considerableincrease in contact angle becausethe main issues. work of adhesion between liquid and air is essen- First,the physicalprinciples of the water repellen- tially negligible. The work of adhesionbetween a cy of porous surfaces,originally applied to treated liquid and a poroussurface, W•, is analogousto Eq.2: textile fabricsto explain the mechanismof water re- pellency,generally have been acceptedin the orni- Wps,= f•(3'• - %,) + (1 - f2)3'•, (3) thologicaland textile-processingliterature (Moilliet 1963;Clark 1969; Kennedy 1969, 1972; Siegfried et where f• is the area of solid-liquid interface and f• al. 1975;Mahoney 1984). Elowson argued that textile that of liquid-air interface per unit macroscopicsur- fabrics and feather substructure are too dissimilar to face area. Substitutionof Eqs. 1 and 2a then yields justify comparison.More specifically,Elowson con- (Cassie and Baxter 1944): sideredthe conditionof parallel, perfectly cylindri- cal rows of rami and barbules essential for the valid- cos0^ = f•cos0 - f•, (4) ity of the "textile model" to predict the water where 0a is now the apparent contact angle as in- repellencyof feathers.Because the rami and barbules creasedby the formation of air-liquid interfaces.
    [Show full text]
  • Arctic National Wildlife Refuge
    FACT SHEET Arctic National Wildlife Refuge ARCTIC BIRDS IN YOUR STATE The Arctic National Wildlife Refuge is a place unlike any Alabama - Ruby-crowned Kinglet Alaska - Redpoll other in the world. The Alaskan refuge, often referred to Arizona - Fox Sparrow as “America’s Serengeti,” is a remote sanctuary for diverse Arkansas - Mallard California - Snow Goose populations of migratory birds, fish, mammals, and marine Colorado - Bohemian Waxwing Connecticut - Greater Scaup life. The Refuge spans an area roughly the size of South Delaware - Black-bellied Plover Carolina and boasts snow-capped mountains, arctic tundra, Florida - Peregrine Falcon Georgia - Gray-checked Thrush foothills, wetlands, boreal forest, and fragile coastal plains. Hawaii - Wandering Tattler America’s Arctic Refuge was set aside as a safe haven for Idaho - Short-eared Owl Illinois - Northern Flicker wildlife in 1960, and it has remained wild in its more than Indiana - Dark-eyed Junco 50 years as a Refuge. Iowa - Sharp-shinned Hawk Kansas - Smith’s Longspur Kentucky – Merlin AMERICA’S LAST GREAT WILDERNESS Louisiana - Long-billed Dowitcher Maine - Least Sandpiper Maryland - Tundra Swan The Arctic Refuge is often mischaracterized as a blank, frozen void Massachusetts - Golden Plover of uninhabited tundra. Although winter frequently coats the Arc- Michigan - Long-tail Duck tic with snow and freezes the ground, it gives way to lush, vibrant Minnesota - Snowy Owl Mississippi – Northern Waterthrush growth in warmer months. In fact, the Refuge’s unparalleled diver- Missouri - American Pipit sity makes it the most biologically productive habitat in the North. Montana - Golden Eagle Nebraska - Wilson’s Warbler Landscape Nevada - Green-winged Teal The majestic Brooks Range rises 9,000 feet, providing sharp contrast New Hampshire - Dunlin New Jersey – Canvasback to the flat, wetlands-rich coastal plains at its feet.
    [Show full text]
  • Mute Swans Make Noise: Lower Great Lakes Population Scrutinized
    Mute Swans Make Noise: Lower Great Lakes Population Scrutinized Scott A. Petrie* Introduction and 10 to15 percent per year. At this growth Population Status rate, the southern Ontario population Mute Swans (Cygnus olor), endemic to will double every seven to eight years. Eurasia, were introduced to North Also, given that the lower Great Lakes American city parks, zoos, avicultural includes about 116,000 acres of coastal collections, and estates in the late 1800s wetland habitat, the population could and early 1900s. The intentional releas- potentially reach 30,000 swans. If Mute es and accidental escape of these birds Swans populations increase to the point and their progeny resulted in a rapidly that they begin nesting on inland wet- expanding free-flying feral population lands and man-made waterbodies, as along the northeastern Atlantic Coast of they have in Poland and along the the United States, portions of the Pacific Atlantic Coast of the United States, we Coast, and more recently, much of the could expect that the southern Ontario southern half of the Great Lakes basin. population could even surpass 30,000 It is well known that exotic waterfowl birds. can have negative ecological impacts on The rapid growth rate of southern native species, particularly if the intro- Ontario’s feral Mute Swans can probably duced species is aggressive, competes be attributed to a number of factors. with other waterfowl for food or habi- The lower Great Lakes is climatically tat, and/or hybridizes with native similar to the native Eurasian range of species. Although hybridization is not Mute Swans.
    [Show full text]
  • Wild Discover Zone SWAN LAKE
    Wild Discover Zone SWAN LAKE This activity is designed to engage all ages of Zoo visitors. Your duty as an excellent educator, and interpreter is to adjust your approach to fit each group you interact with. Be aware that all groups are on some kind of a time limit. There are no set time requirements for this interaction. Read their behavior and end the interaction when they seem ready to move on. Theme:. It is easy to observe wildlife all around us including our own backyards, parks, and green spaces. Summary: Educators will help visitors observe local wildlife and learn techniques to identify several species of animals on Swan Lake with the help of field guides and technology. Objectives: At the end of the encounter, guests will: Appreciate that wildlife is a part of our communities and accessible to all Use observation skills to compare and contrast field marks on local animals Be able to identify several different species on Swan Lake Engage with technology through the use of binoculars and spotting scope to make observations Location: Cart near Swan Lake between Gibbon Island and Admin Building Materials: Binoculars, spotting scope with tripod, Swan Lake field guides, bird feeder with seed, several hummingbird feeders Background Information: While many visitors consider “wildlife” the exotic animals we have in the Zoo, there is actually native wildlife happening all around us too! One of the most observable types of local wildlife is birds. Correctly identifying birds and other types of plants and animals is possible with a few techniques and tools paired with simple observation.
    [Show full text]
  • Contamination by Chlorinated Hydrocarbons and Lead in Steller's
    First Symposium on Steller’s and White-tailed Sea Eagles in East Asia pp. 91-106, 2000 UETA, M. & MCGRADY, M.J. (eds) Wild Bird Society of Japan, Tokyo Japan Contamination by chlorinated hydrocarbons and lead in Steller’s Sea Eagle and White-tailed Sea Eagle from Hokkaido, Japan Hisato IWATA1*, Mafumi WATANABE2, Eun-Young KIM1, Rie GOTOH2, Genta YASUNAGA2, Shinsuke TANABE2, Yasushi MASUDA3 & Shoichi FUJITA1 1. Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9 North Ward, Sapporo, Japan. 2. Department of Environment Conservation, Ehime University, Tarumi 3-5-7, Matsuyama, Japan. 3. Shiretoko Museum, Honmachi 49, Shari, Hokkaido, Japan. Abstract. Chronic exposure to man-made chemicals, particularly chlorinated hydrocarbons, in raptors has been associated with reproductive impairment and population declines. In addition, incidents of sub-lethal and lethal lead poisoning in raptors through ingestion of spent gunshot have been reported. However, little information is available on the contaminant levels of Steller’s Sea Eagle (SSE: Haliaeetus pelagicus) and White-tailed Sea Eagle (WSE: H. albicilla) from Hokkaido, Japan. The objective of this study was to determine the levels of toxic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides, and lead in sea eagles wintering in Hokkaido, and to evaluate the ecotoxicological risk based on their concentrations. SSEs and WSEs which were found dead or debilitated and subsequently died in Hokkaido from 1986 to 1998 were analysed. All eagles contained detectable amounts of PCBs, DDTs, hexachlorocyclohexane isomers, chlordane related compounds, and hexachlorobenzene. The highest concentrations of PCBs and DDTs in breast muscles were 18,000 and 17,000 ng/g (wet weight), respectively.
    [Show full text]
  • Environmental Impact Report
    ENVIRONMENTAL IMPACT REPORT SUPPLEMENT TO THE REPORT ON THE ENVIROMENTAL IMPACT OF THE “CONSTRUCTION OF THE KARCINO-SARBIA WIND FARM (17 WIND TURBINES)” OF 2003 Name of the undertaking: KARCINO-SARBIA Wind Farm (under construction) Contractor: AOS Agencja Ochrony Środowiska Sp. z o.o. based in Koszalin Arch. No. 52/OŚ/OOS/06 Koszalin, September 2006 Team: Bogdan Gutkowski, M.Sc.Eng.– Expert for Environmental Impact Assessment Appointed by the Governor of the West Pomerania Province Marek Ziółkowski, M.Sc. Eng. – Environmental Protection Expert of the Ministry of Environmental Protection, Natural Resources and Forestry; Environmental Protection Consultant Dagmara Czajkowska, M.Sc. Eng. – Specialist for Environmental Impact Assessment, Specialist for Environmental Protection and Management Ewa Reszka, M.Sc. – Specialist for the Protection of Water and Land and Protection against Impact of Waste Damian Kołek, M.Sc.Eng. – Environmental Protection Specialist 2 CONTENTS I. INTRODUCTION .................................................................................................................. 5 II. GENERAL INFORMATION ABOUT THE PROJECT ..................................................... 9 1. Location and adjacent facilities....................................................................................................... 9 2. Modifications to the project .......................................................................................................... 10 3. Technical description of the project ..............................................................................................
    [Show full text]
  • Trumpeter Swan Habitat Conservation Strategy
    Trumpeter Swan Habitat Conservation Strategy Photo Credit: Northwest Territories Version 6 October 28, 2014 Rick Bonar Table of Contents Preface ........................................................................................................................................................ 3 Summary ..................................................................................................................................................... 4 Introduction ................................................................................................................................................ 5 Conservation Status ..................................................................................................................................... 7 Population Status ........................................................................................................................................ 8 FMA Observations ....................................................................................................................................... 9 Limiting Factors ........................................................................................................................................... 9 Habitat Loss and Alteration ................................................................................................................................. 9 Human Disturbance ...........................................................................................................................................
    [Show full text]
  • (USDA) Forest Service Working with Partners for Bird Conservation
    U.S. Department of Agriculture (USDA) Forest Service Appendix A Working with Partners for Bird Conservation Bird Conservation Accomplishments Published 2004 This appendix lists the bird conservation accomplishment projects by USDA Forest Service Deputy Areas: National Forest Systems, Research and Development, State and Private and International Programs. This is not a complete set of the many bird conservation actions that have been or are currently being implemented across Forest Service Deputy Areas. It represents bird conservation accomplishment projects from the administrative units that replied at the time of the request. Projects started before fiscal year 2000 that are ongoing or conducted annually (beyond 2002) are reported as “ongoing” or “annually”, with the date of inception included (when known). I. National Forest Systems Region 1 (R-1): Northern Region Regionwide Accomplishments Partnership Enhancement • Partners in Flight (PIF) and Bird Conservation Region (BCR) Plans. Forest Service biologists throughout the Northern Region participated in the development of PIF and BCR plans for Montana, Idaho, North Dakota, and South Dakota. Active participation is ongoing with PIF working groups, BCR coordinators, joint venture meetings, and other activities that promote bird conservation. Partners in these efforts include the American Bird Conservancy (ABC), Montana Fish, Wildlife, & Parks (MFWP), Idaho Department of Fish and Game 1 (Idaho Fish & Game), U.S. Fish & Wildlife Service (USFWS), Bureau of Land Management (BLM), Potlatch Corp., Plum Creek Timber Co., local Audubon Society Chapters, and the Universities of Montana and Idaho. Ongoing since FY1993. • Montana Sage Grouse and Sagebrush Conservation Strategy. The Northern Region participated in the Montana Fish, Wildlife & Parks-led effort to develop a statewide sage grouse and sagebrush conservation strategy.
    [Show full text]