Molecular Characterization of Environmental Cladosporium Species Isolated from Iran Ghiaie Asl I1, Motamedi M2*, Shokuhi GR1, Jalalizand N3, Farhang A4, Mirhendi H4

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Characterization of Environmental Cladosporium Species Isolated from Iran Ghiaie Asl I1, Motamedi M2*, Shokuhi GR1, Jalalizand N3, Farhang A4, Mirhendi H4 Current Medical Mycology 2017, 3(1): 1-5 Molecular characterization of environmental Cladosporium species isolated from Iran Ghiaie Asl I1, Motamedi M2*, Shokuhi GR1, Jalalizand N3, Farhang A4, Mirhendi H4 1 Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran 2 Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 3 Department of Medical Parasitology and Mycology, School of Public Health, National Institute of Public Health, Tehran University of Medical Sciences, Tehran, Iran 4 Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran Article Info A B S T R A C T Article type: Background and Purpose: Cladosporium species are ubiquitous, saprobic, Original article dematiaceous fungi, only infrequently associated with human and animal opportunistic infections. Materials and Methods: Airborne samples were collected using the settle plate method, and soil samples were obtained from a depth of 5-10 cm of the superficial soil layer. Samples were cultured on Sabouraud dextrose agar (SDA) plates, incubated at Article History: 25°C, and examined daily for fungal colonies for two to three weeks. Isolates were Received: 26 April 2017 identified as Cladosporium species according to the macroscopic and microscopic Revised: 19 June 2017 criteria. For species differentiation, DNA from 53 isolates was extracted and subjected Accepted: 25 July 2017 to amplification of the internal transcribed spacer (ITS) region followed by sequencing. Results: A total of 270 samples were collected from various environmental sources, of which 79 strains of Cladosporium species were isolated. The most frequent species was * Corresponding author: C. cladosporioides (50.6%), followed by C. iridis (44.3%), C. elatum (2.5%), C. Marjan Motamedi peranqestum (1.3%), and C. alicinum (1.3%). Department of Medical Parasitology Conclusion: The collected data can serve as baseline information for future research and and Mycology, School of Medicine, may be useful in the development of preventive and educational strategies. Shiraz University of Medical Sciences, Shiraz, Iran. Keywords: Cladosporium species, Dematiaceous molds, Morphological characteristics, Email:[email protected] Nuclear ribosomal RNA gene, Sequence analysis How to cite this paper Ghiaie Asl I, Motamedi M, Shokuhi GR, Jalalizand N, Farhang A, Mirhendi H. Molecular characterization of environmental Cladosporium species isolated from Iran. Curr Med Mycol. 2017; 3(1): 1-5. DOI: 10.29252/cmm.3.1.1 Introduction ladosporium species are among the most Cladosporium species are cosmopolitan, agents of common black (dematiaceous) molds [1]. decay, and/or a cause of allergy or even plant or C The small conidia of Cladosporium human diseases. The first reports of Cladosporium species easily spread in large numbers species in Iran dates back to 1939 when Petrak over long distances and represent the most reported C. herbarium on Dianthus orientalis from common fungal components isolated from air [2]. Kurdistan, west of Iran [9]. Since then, there have The most common Cladosporium species are been several sporadic reports of Cladosporium primarily isolated from soil and plant material, species from various substrates in Iran [10, 11]. In where they are frequently encountered as all the studies, different species of this genus were saprobes or secondary invaders on follicular identified by the conventional methods based on lesions concomitant with other plant pathogenic morphological characteristics. Species belonging fungi [3]. Cladosporium species are also known to Cladosporium are characterized by specific to be of common medical relevance inclinical conidiophores, which are erect, straight, or geni- laboratories, being mostly associated with allergic culate and produce abundant branched acropetal lung mycoses [4], subcutaneous infections [5], chains of olive green to brown conidia with a and rarely, disseminated infe-ctions [6]. unique coronate scar structure [12]. However, due These saprobic species are considered hetero- to the diversities and similarities among different geneous complexes, composed of several species, morphological methods are not specific genetically and morphologically distinct species enough, and it appears that a more accurate [7]. As of yet, more than 700 species have been method is critical to differentiate various members identified and described [8]. A wide range of of the genus [13, 14]. Copyright© 2017, Published by Mazandaran University of Medical Sciences on behalf of Iranian Society of Medical Mycology and Invasive Fungi Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY) License (http://creativecommons.org/) which permits unrestricted use, distribution and reproduction in any medium, provided appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Molecular Characterization of Cladosporium Isolates Ghiaie Asl I et al. In addition to standard procedures, use of buffer (100 mM Tris- HCl, pH 8; 10 mM EDTA; state-of-the-art techniques such as polymerase 100 mM NaCl; 1% sodium dodecyl sulfate (SDS); chain reaction (PCR), followed by sequencing of 2% triton X-100), and 300 μL of phenol- appropriate targets and obtaining data on genetic chloroform (1:1). The samples were vortexed structure and variation of the fungal populations vigorously for 5 min and centrifuged for 5 min at have important implications for understanding 5000 rpm. Then, the supernatant was transferred to the microbial epidemiology of these fungi [15]. a fresh tube in which DNA was extracted with Various DNA-based tech-niques can be applied chloroform. An identical volume of isopropanol for genetic study of fungi, of which nucleotide and a 0.1-volume of 3 M sodium acetate (pH 5.2) sequence comparison is a reliable approach to were added to the supernatant, and after incubation systematic molecular study of most fungi. at -20°C for 30 min, the mixture was centrifuged Therefore, we aimed to study the diversity of for 15 min at 12,000 rpm. The precipitate was Cladosporium species from environmental sources washed with cold 70% ethanol, dried in air, through DNA sequence analysis. dissolved in 50 μL of distilled water, and stored at -20°C until use. Materials and Methods ITS1–5.8S–ITS2 rRNA region was amplified Sampling using the V9G (5′–TTA CgT CCC TgC CCT TTg A total of 270 samples were collected from TA–3′) and LS266 (5′–gCA TTC CCA AAC AAC different sources such as air, soil, grain, fruit, and TCg ACT C–3′) primers [17]. PCR reactions were garbage from different regions, including the Tehran performed using 2X PCR Master Mix (Amplicon, (18.6%) and Isfahan (48.1%) University campus, and Denmark), 25 pmol of each primer, 1 µL of DNA public places in the Ardabil Province (33.3%) in Iran. template, and sufficient distilled water to reach a This research was approved by the Ethics Committee final volume of 25 µL. The following conditions of the university (94/290/1596). were used for amplification: one cycle at 94°C for 5 Air sampling was performed by the settled plate min, 30 cycles at 94°C for 30 s, 60°C for 45 s, and method, using Sabouraud dextrose agar (SDA, E. 72°C for 45 s, followed by a final extension step at Merck, Germany) containing chloramphenicol (100 72°C for 7 min. A negative control (water) was mg/L) and gentamicin (40 mg/L). Plates were located included in all the PCR experiments. Furthermore, at different heights on the tree branches and on the 5-μL aliquots of the amplicons were electro- ground for 30 min. phoresed using a 1.5% agarose gel in Tris-Borate- For soil sampling, after removing the surface EDTA buffer (90 mM Tris, 90 mM boric acid, and loose litter layer (approximately the top 4 cm), 2 mM EDTA, pH 8.3) and visualized under about 15 g of soil was taken from a depth of 5-10 ultraviolet irradiation after ethidium bromide cm of the superficial layer in each location by a staining. A 100-bp DNA ladder was utilized as a spatula, and the collected samples were transferred molecular size marker. to the laboratory. An aliquot of 10 g of each soil PCR products from 53 Cladosporium strains were sample was added to a test tube containing 45 mL purified and sequenced bilaterally by the V9G and of sterile distilled water, mixed for 5 min, and then LS266 primers using an automated DNA sequencer the suspension was left at room temperature for an (ABI PRISM™ ABI-3730 Genetic Analyzer, PE hour in order to let the soil precipitate with spores Applied Biosystems, United States). For final remaining in the supernatant. Subsequently, 15 mL identification, the obtained consensus sequences were of the supernatant was transferred to another test compared with the Cladosporium rRNA barcode tube and centrifuged at 2000 rpm for 5 min. database (https://www.ncbi.nlm.nih. gov/pubmed/). Finally, 250 µL of the pellet was added to a Multi-alignment and construction of sequence Sabouraud dextrose agar plate supplemented with difference count matrix for edited sequences obtained 0.005% chloramphenicol. in the present studyand sequences of clinical strains All the plates were incubated at 25°C for 2–3 weeks obtained from GenBank (https://www.ncbi.nlm.nih. and examined daily based on their dark-colored colony gov/pubmed/) were performed using
Recommended publications
  • Cladosporium Lebrasiae, a New Fungal Species Isolated from Milk Bread Rolls in France
    fungal biology 120 (2016) 1017e1029 journal homepage: www.elsevier.com/locate/funbio Cladosporium lebrasiae, a new fungal species isolated from milk bread rolls in France Josiane RAZAFINARIVOa, Jean-Luc JANYa, Pedro W. CROUSb, Rachelle LOOTENa, Vincent GAYDOUc, Georges BARBIERa, Jerome^ MOUNIERa, Valerie VASSEURa,* aUniversite de Brest, EA 3882, Laboratoire Universitaire de Biodiversite et Ecologie Microbienne, ESIAB, Technopole^ Brest-Iroise, 29280 Plouzane, France bCBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands cMeDIAN-Biophotonique et Technologies pour la Sante, Universite de Reims Champagne-Ardenne, FRE CNRS 3481 MEDyC, UFR de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims cedex, France article info abstract Article history: The fungal genus Cladosporium (Cladosporiaceae, Dothideomycetes) is composed of a large Received 12 February 2016 number of species, which can roughly be divided into three main species complexes: Cla- Received in revised form dosporium cladosporioides, Cladosporium herbarum, and Cladosporium sphaerospermum. The 29 March 2016 aim of this study was to characterize strains isolated from contaminated milk bread rolls Accepted 15 April 2016 by phenotypic and genotypic analyses. Using multilocus data from the internal transcribed Available online 23 April 2016 spacer ribosomal DNA (rDNA), partial translation elongation factor 1-a, actin, and beta- Corresponding Editor: tubulin gene sequences along with Fourier-transform infrared (FTIR) spectroscopy and Matthew Charles Fisher morphological observations, three isolates were identified as a new species in the C. sphaer- ospermum species complex. This novel species, described here as Cladosporium lebrasiae,is Keywords: phylogenetically and morphologically distinct from other species in this complex. Cladosporium sphaerospermum ª 2016 British Mycological Society.
    [Show full text]
  • Formulation of the Endophytic Fungus Cladosporium Oxysporum Berk
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 55, No. 1 (2015) DOI: 10.1515/jppr-2015-0011 Formulation of the endophytic fungus Cladosporium oxysporum Berk. & M.A. Curtis, isolated from Euphorbia bupleuroides subsp. luteola, as a new biocontrol tool against the black bean aphid (Aphis fabae Scop.) Oussama Ali Bensaci1*, Harzallah Daoud2, Nadia Lombarkia1, Khamsa Rouabah1 1 Laboratory of Improvement of the Phytosanitary Protection Techniques in Mountainous Agrosystems, Agronomy Department, ISVSA, University Hadj Lakhdar, Batna 05000, Algeria 2 Laboratory of Applied Microbiology, Faculty of Natural Sciences and Life, University Ferhat Abbas Sétif 1, 19000, Algeria Received: July 16, 2014 Accepted: February 16, 2015 Abstract: Two formulations containing culture filtrates and conidial suspensions of the endophytic fungus Cladosporium oxysporum Berk. & M.A. Curtis, isolated previously from stems of Euphorbia bupleuroides subsp. luteola (Kralik) Maire, were experimentally tested for their aphicid activity against the black bean aphid Aphis fabae Scop. found in Algeria. It was shown that invert emulsions are more effective against aphids, than using aqueous suspensions. This was especially true for formulations containing culture filtrates. The relatively in- significant mortalities obtained by formulations containing conidial suspensions indicated a low infectious potential towards the aphids. The proteolytic activity seemed to be more important than the chitinolytic activity of the fungus against the black bean aphid A. fabae. Key words: Aphis
    [Show full text]
  • Fungi and Their Potential As Biological Control Agents of Beech Bark Disease
    Fungi and their potential as biological control agents of Beech Bark Disease By Sarah Elizabeth Thomas A thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Royal Holloway, University of London 2014 1 DECLARATION OF AUTHORSHIP I, Sarah Elizabeth Thomas, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: _____________ Date: 4th May 2014 2 ABSTRACT Beech bark disease (BBD) is an invasive insect and pathogen disease complex that is currently devastating American beech (Fagus grandifolia) in North America. The disease complex consists of the sap-sucking scale insect, Cryptococcus fagisuga and sequential attack by Neonectria fungi (principally Neonectria faginata). The scale insect is not native to North America and is thought to have been introduced there on seedlings of F. sylvatica from Europe. Conventional control strategies are of limited efficacy in forestry systems and removal of heavily infested trees is the only successful method to reduce the spread of the disease. However, an alternative strategy could be the use of biological control, using fungi. Fungal endophytes and/or entomopathogenic fungi (EPF) could have potential for both the insect and fungal components of this highly invasive disease. Over 600 endophytes were isolated from healthy stems of F. sylvatica and 13 EPF were isolated from C. fagisuga cadavers in its centre of origin. A selection of these isolates was screened in vitro for their suitability as biological control agents. Two Beauveria and two Lecanicillium isolates were assessed for their suitability as biological control agents for C.
    [Show full text]
  • Cladosporium Spp. an Entomopathogenic Fungus for Controlling Whiteflies and Aphids in Egypt
    Pakistan Journal of Biological Sciences 3 (10): 1662-1667, 2000 © Copyright by the Capricorn Publications, 2000 Cladosporium spp. An Entomopathogenic Fungus for Controlling Whiteflies and Aphids in Egypt Nagdy. F. Abdel-Baky Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura-35516, Egypt Abstract: Five species of entomopathogenic fungi were tested against whiteflies and aphids. Cladosporium spp. showed a high incidence on the two insect species tested (81% of the total isolated species). However, C. uridenicola was the predominant species isolated from both insect species during the two successive seasons of 1998 and 1999. Natural infection by Cladosporium ranged from 18.19-44.38% and 16.4- 45.27% in 1998 and 1999, respectively, according to insect species and the host plant. Statistical analysis revealed a high correlation (R =0.8759 ± 0.093) between the total investigated and total infected of each insect during the two successive years of study. The natural infection of Cladosporium to whitefly life stages was higher on whitefly nymphs (87.8%) than adults (8.08%) and eggs (4.15%) in 1998 and 1999. The results showed that the seasonal distribution of Cladosporium occurred all year around, but rates were higher during the period from June until November and that coincide with the high population of whiteflies and aphids. The weather had a significant effect on insects infection and had no effect on the others. The laboratory tests showed a high pathogenicity of the candidate on A. gossypii, A. craccivora and B. agrentifollii than other reported fungal. Key words: Entomopathogenic fungi, Cladosporium spp., whiteflies, Bemisia species complex, Bemisia argentifolii, Trialeurodes ricini, Aphididae, Aphis gossypii, A.
    [Show full text]
  • CLADOSPORIUM SPP.- CAUSE of OPPORTUNISTIC MYCOSES Institute of Microbiology Faculty of Medicine in Nis
    ACTA FAC MED NAISS UDC 616-002.828:615.282 Professional article ACTA FAC MED NAISS 2007; 24 (1): 15-19 Suzana Tasic Natasa Miladinovic Tasic CLADOSPORIUM SPP.- CAUSE OF OPPORTUNISTIC MYCOSES Institute of Microbiology Faculty of Medicine in Nis SUMMARY Cladosporium spp. have a world-wide distribution and are among the most common air-borne fungi. Some species are frequently isolated contaminants, however, some species are pathogenic and toxigenic to humans. Cladosporium spp. are known to be the cause of cerebral and cutaneous phaehyphomycoses. In addition,Cladosporium spp . are strong aero-allergens and cause serious allergic diseases of the respiratory tract, as well as intrabronchial lesions. Identification ofCladosporium spp . as well as differentiation of species of this genus is possible only on the basis of morphologic and morphometric characteristics after standard procedure of cultivation and isolation of these strains in a laboratory for mycology. The procedure of isolation of these species is conducted in biologically safe cabinets, with obligatory taking all preventive measures. There is a few information in the literature about sensitivity of Cladosporium spp. to antimicotics. Key words: Cladosporium spp., opportunistic mycoses INTRODUCTION water pipes (7,8). Different species of plants are the food source to these fungi, so that Cladosporium spp. Phaeohyphomycosis is a fungal infection can be found on dead plants, wood plants, food, caused by fungi from the group dematicae straw, soil, colors, and textile. They contain more (pigmented moulds). The cause of this infection is than 10 antigens. alsoCladosporium spp. (1,2). Cladosporium spp. are pigmented moulds CLASSIFICATION (dematicae) widely distributed in the air as well as decayed organic matter, and very often they are food Cladosporium spp.
    [Show full text]
  • Entomopathogenic Fungi Against Whiteflies
    Entomopathogenicfung i against whiteflies Tritrophic Interactions betweenAschersonia species, Trialeurodes vaporariorum and Bemisia argentifolii, and glasshouse crops EllisT.M .Meeke s Promoter: Prof.Dr . J.C.va n Lenteren Hoogleraar in deEntomologi e Wageningen Universiteit Copromotor: Dr.Ir .J.J .Franse n Senior onderzoeker Entomologie Proefstation voorBloemisteri j enGlasgroente s Aalsmeer Samenstellingpromotiecommissie : Dr.J.K .Pel l (IACRRothamsted , UK) Dr. W.Gam s (Centraal Bureau Schimmelcultures, NL) Prof.Dr .J.M . Vlak (Wageningen Universiteit) Prof.Dr .Jr .A.H.C . vanBrugge n (Wageningen Universiteit) . 1 I / E.T.M. Meekes Entomopathogenic fungi against whiteflies Tritrophic interactions betweenAschersonia species, Trialeurodes vaporariorum andBemisia argentifolii, and glasshouse crops Proefschrift terverkrijgin g van degraa dva n doctor opgeza gva nd erecto r magnificus van deWageninge n Universiteit Prof.Dr .Ir .L . Speelman inhe t openbaar te verdedigen opwoensda g 27jun i 2001 desnamiddag st e 13.30i n de Aula 0 D'-? / On _'•v J r\j Meekes,E.T.M E.T.M.(2001) (2001). Entomopathogenicfung i againstwhitefly : tritrophicinteraction sbetwee nAschersonia species , Trialeurodes vaporariorum andBemisia argentifolii, an d glasshouse crops ISBN: 90-5808-443-4 Contents Chapter 1 General Introduction 1 Chapter2 Virulence ofAschersonia spp .agains t whiteflies 19 Bemisia argentifoliian d Trialeurodes vaporariorum Chapter 3 Dosean dtim edependen t mortality of thewhiteflie s 35 Bemisiaargentifolii an d Trialeurodes vaporariorum byAschersonia
    [Show full text]
  • An All-Taxa Biodiversity Inventory of the Huron Mountain Club
    AN ALL-TAXA BIODIVERSITY INVENTORY OF THE HURON MOUNTAIN CLUB Version: August 2016 Cite as: Woods, K.D. (Compiler). 2016. An all-taxa biodiversity inventory of the Huron Mountain Club. Version August 2016. Occasional papers of the Huron Mountain Wildlife Foundation, No. 5. [http://www.hmwf.org/species_list.php] Introduction and general compilation by: Kerry D. Woods Natural Sciences Bennington College Bennington VT 05201 Kingdom Fungi compiled by: Dana L. Richter School of Forest Resources and Environmental Science Michigan Technological University Houghton, MI 49931 DEDICATION This project is dedicated to Dr. William R. Manierre, who is responsible, directly and indirectly, for documenting a large proportion of the taxa listed here. Table of Contents INTRODUCTION 5 SOURCES 7 DOMAIN BACTERIA 11 KINGDOM MONERA 11 DOMAIN EUCARYA 13 KINGDOM EUGLENOZOA 13 KINGDOM RHODOPHYTA 13 KINGDOM DINOFLAGELLATA 14 KINGDOM XANTHOPHYTA 15 KINGDOM CHRYSOPHYTA 15 KINGDOM CHROMISTA 16 KINGDOM VIRIDAEPLANTAE 17 Phylum CHLOROPHYTA 18 Phylum BRYOPHYTA 20 Phylum MARCHANTIOPHYTA 27 Phylum ANTHOCEROTOPHYTA 29 Phylum LYCOPODIOPHYTA 30 Phylum EQUISETOPHYTA 31 Phylum POLYPODIOPHYTA 31 Phylum PINOPHYTA 32 Phylum MAGNOLIOPHYTA 32 Class Magnoliopsida 32 Class Liliopsida 44 KINGDOM FUNGI 50 Phylum DEUTEROMYCOTA 50 Phylum CHYTRIDIOMYCOTA 51 Phylum ZYGOMYCOTA 52 Phylum ASCOMYCOTA 52 Phylum BASIDIOMYCOTA 53 LICHENS 68 KINGDOM ANIMALIA 75 Phylum ANNELIDA 76 Phylum MOLLUSCA 77 Phylum ARTHROPODA 79 Class Insecta 80 Order Ephemeroptera 81 Order Odonata 83 Order Orthoptera 85 Order Coleoptera 88 Order Hymenoptera 96 Class Arachnida 110 Phylum CHORDATA 111 Class Actinopterygii 112 Class Amphibia 114 Class Reptilia 115 Class Aves 115 Class Mammalia 121 INTRODUCTION No complete species inventory exists for any area.
    [Show full text]
  • Taxonomy and Enzymology of Molds*
    Original article Microbiology of pollen and bee bread : taxonomy and enzymology of molds* M. Gilliam, D. B. Prest B. J. Lorenz US Department of Agriculture, Agricultural Research Service, Carl Hayden Bee Research Center, 2000 E. Allen Road, Tucson, AZ 85719, USA (received 26-5-1988, accepted 18-8-1988) Summary — One-hundred and forty-eight molds were isolated from the following samples of almond, Prunus dulcis, pollen : floral pollen collected by hand; corbicular pollen from pollen traps placed on colonies of honey bees, Apis mellifera, in the almond orchard; and bee bread stored in comb cells for one, three, and six weeks. The majority of molds identified were Penicillia (32%), Mucorales (21%), and Aspergilli (17%). In general, the number of isolates decreased in pollen as it was collected and stored by the bees. Each type of pollen sample appeared to differ in regard to mold flora and dominant species. Aureobasidium pullulans, Penicillium corylophilum, Penicillium crustosum, and Rhizopus nigricans were among the molds that may have been introduced by bees during collection and storage of pollen. Mucor sp., the dominant mold in floral pollen, was not found in corbicular pollen and bee bread. Tests for 19 enzymes revealed that most of the molds produced caprylate esterase-lipase, leucine aminopeptidase, acid phosphatase, phosphoamidase, B-glucosi- dase, and Macetyl-B-glucosaminidase. Thus, enzymes involved in lipid, protein and carbohydrate metabolism were produced by pollen molds. Molds could also contribute organic acids, antibiotics and other metabolites. pollen - bee bread - molds Résumé — Microbiologie du pollen et du pain d’abeilles : taxonomie et enzymologie des moi- sissures.
    [Show full text]
  • Annual Report of the State Botanist 1890
    [From the 44th Report of the New York State Museu>^ of Xaturai, History] ANNUAL REPORT STATE BOTANIST State of New York. Made to the Reg^ents of the University, Pursuant to Chapter 355 of the Laws of 1883. By CHARLES H. PECK. ALBANY: JAMES B. LYON, STATE PRINTER. 1891. State of New York. No. 77. IN SKNATB, January 31, 1891. ANNUAL REPORT ' SXAXE BOTANIST Office of the State Botanist, \ Albany, January 31, 1891. ) To the Honorable the Regents of the University of the State of Neio York : I have the honor to present to you my annual report for the year 1890. Very respectfully. CHARLES H. PECK. : : REPORT. To the Regents of the University of the State of New York Gentlemen.— I have the honor of communicating to you the fol- lowing- report Specimens of plants for the State Herbarium have been collected and prepared by the Botanist during the past year in the counties of Albany, Columbia, Cattaraugus, Dutchess, Essex, Greene, Ham- ilton, Oneida, Oswego, Putnam, Rensselaer, Steuben and Warren. Specimens contributed by correspondents have been collected in the counties of Dutchess, Onondaga, Ontario, Orleans, Oswego, St. Lawrence and Westchester. Specimens of 269 species of plants have been added to the Herb- arium, of which 254 were collected by the Botanist and 15 were contributed. Of the former 72 are hew to the Herbarium, of the latter 11. The number of species represented in the Herbarium has, therefore, been increased by 83. Of the remaining 186 species, the specimens represent forms or varieties not before represented or not well shown, or are specimens intended to accompany the trunk sections now being made of the trees of the State.
    [Show full text]
  • Fungi and Allergic Lower Respiratory Tract Diseases
    Clinical reviews in allergy and immunology Series editors: Donald Y. M. Leung, MD, PhD, and Dennis K. Ledford, MD Fungi and allergic lower respiratory tract diseases Alan P. Knutsen, MD,a Robert K. Bush, MD,b Jeffrey G. Demain, MD,c David W. Denning, FRCP, FMedSci,d Anupma Dixit, PhD, MPH,e Abbie Fairs, MD,f Paul A. Greenberger, MD,g Barbara Kariuki, BS, MPH,a Hirohito Kita, MD,h Viswanath P. Kurup, PhD,i Richard B. Moss, MD,j Robert M. Niven, MD,d Catherine H. Pashley, MD,f Raymond G. Slavin, MD,e Hari M. Vijay, PhD, MPH,k and Andrew J. Wardlaw, MDf St Louis, Mo, Madison and Milwaukee, Wis, Anchorage, Alaska, Manchester and Leicester, United Kingdom, Chicago, Ill, Rochester, Minn, Palo Alto, Calif, and Ottawa, Ontario, Canada INFORMATION FOR CATEGORY 1 CME CREDIT Credit can now be obtained, free for a limited time, by reading the review PhD, Richard B. Moss, MD, Robert M. Niven, MD, Catherine H. Pashley, articles in this issue. Please note the following instructions. MD, Raymond G. Slavin, MD, Hari M. Vijay, PhD, MPH, and Andrew J. Method of Physician Participation in Learning Process: The core ma- Wardlaw, MD terial for these activities can be read in this issue of the Journal or online at Activity Objectives the JACI Web site: www.jacionline.org. The accompanying tests may only 1. To describe the most common environmental factors affecting fungal be submitted online at www.jacionline.org. Fax or other copies will not be spore dispersal . accepted. 2. To list the diagnostic criteria for allergic bronchopulmonary aspergil- Date of Original Release: February 2012.
    [Show full text]
  • Diversity and Control of Spoilage Fungi in Dairy Products: an Update
    microorganisms Review Diversity and Control of Spoilage Fungi in Dairy Products: An Update Lucille Garnier 1,2 ID , Florence Valence 2 and Jérôme Mounier 1,* 1 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France; [email protected] 2 Science et Technologie du Lait et de l’Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France; fl[email protected] * Correspondence: [email protected]; Tel.: +33-(0)2-90-91-51-00; Fax: +33-(0)2-90-91-51-01 Received: 10 July 2017; Accepted: 25 July 2017; Published: 28 July 2017 Abstract: Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods.
    [Show full text]
  • Taxonomic Revision of the Genus Cladosporium S. Lat. 2
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2004 Band/Volume: 56 Autor(en)/Author(s): Schubert Konstanze, Braun Uwe Artikel/Article: Taxonomic revision of the genus Cladosporium s. lat. 2. Morphotaxonomic examination of Cladosporium species occurring on hosts of the families Bignoniaceae and Orchidaceae. 296-317 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Taxonomic revision of the genus Cladosporium s. lat. 2. Morphotaxonomic examination of Cladosporium species occurring on hosts of the families Bignoniaceae and Orchidaceae Konstanze Schubert & Uwe Braun Martin-Luther-Universität, FB. Biologie, Institut für Geobotanik und Botanischer Garten, Neuwerk 21, D-06099 Halle (Saale), Germany Schubert, K. & U. Braun (2004). Taxonomic revision of the genus Cladospor- ium s. lat. 2. Morphotaxonomic examination of Cladosporium species occurring on hosts of the families Bignoniaceae and Orchidaceae. - Sydowia 56 (2): 76-97. Cladosporium species described and reported on hosts belonging to the Bignoniaceae and Orchidaceae have been examined. They are redescribed, illu- strated and their taxonomic positions are discussed. Three new Cladosporium species are described, and two new combinations into the genus Fusicladium are introduced. Cladosporium cattleyae is reduced to synonymy with Dendryphiella vinosa. Keywords: hyphomycetes, Cladosporium, taxonomy, C. jacarandicola, C. orchidiphilum, C. rectangulare, Fusicladium jacarandae, F. orchidis, new species, new combinations, key. During the course of monographic studies of the genus Clados- porium (Pers.: Fr.) Link s. lat. several new, undescribed species of Cladosporium s. str. have been found. Other species, which have previously been placed into Cladosporium proved to be distinct from the latter genus and have to be excluded.
    [Show full text]