Reports from Observers

Total Page:16

File Type:pdf, Size:1020Kb

Reports from Observers , REPORTS FROM OBSERVERS Monitoring of Active Galactic Nuclei: the Why and the How D. ALLOIN1, M. SANTOS-LLE01, G. STlRPE2, and B.M. PETERSON3 1Departement d'Astrophysique et de Cosmologie, URA 173 CNRS, Observatoire de Paris-Meudon, France; 20sservatorio Astronomico di Bologna, Italy; 3Department ofAstronomy, The Ohio State University, Columbus, Ohio, USA 1. Introduction the inner structure of AGNs is provided by collaboration (Ulrich et al., 1984; Clavel et measuring in detail how the emission-line al., 1990). One of the major surprises of Over the past twenty years, ground­ fluxes change in response to changes in the monitoring campaigns of the eighties based optical observations as weil as the continuum flux. The broad emission was that the BLR seemed to be an order ultraviolet, X-ray, and y-ray observations lines respond with small but measurable of magnitude smaller than the value Irom space-borne telescopes have re­ time delays (days to weeks) to variations generally predicted by photoionisation vealed the variable nature 01 the conti­ of the central continuum source, making equilibrium calculations. This conclusion nuum and emission lines in the spectra it possible to use the technique of demanded even denser sampling for 01 active galactic nuclei (hereafter re­ "reverberation mapping" to probe the AGN variability programmes. lerred to as AGN). Variability is now structure and kinematics of the BLR. In In 1987, two successive workshops in recognized as one of the distinctive general, the narrow lines do not vary in Segovia and Atlanta featured lively dis­ leatures of these important but poorly flux since the size of the NLR is usually cussion of results obtained from AGN understood objects. too large to provide a coherent response variability studies. It became apparent to to changes in the level of the continuum the community that the goals of spectro­ flux. scopic monitoring programmes could in 2. The Why of Monitoring The fundamentals of reverberation fact be achieved only if sufficient observ­ Campaigns mapping were described by Blandlord ing time could be devoted to such an and McKee (1982), but it has been only approach. 2. 1 Some basics over the last five years or so that the Cooperation of observers on a scale first tentative applications of this tech­ that was unprecedented in extragalactic In the study 01 AGN, variability affords nique to real AGN have been possible, astronomy, i.e. with very large collabora­ a potentially valuable probe of the as severe conditions on the amount and tions involving around 100 astronomers, properties of both the continuum source quality of the data have to be met (Pe­ became a necessity. itself and the broad-line emitting region terson, 1994). To deal with a collaboration of this surrounding it. Some experiments, undertaken by the size and a highly time-constrained pro­ Knowledge of the continuum variabili­ "International AGN Watch" collaboration, gramme, new ways of working and ty pattern in different wavebands from y­ have been conducted in part with tele­ cooperating had to be invented. The ray to radio wavelengths can provide a scopes at the European Southern Obser­ International AGN Watch was therefore way to probe the various physical pro­ vatory (ESO), and these form the subject established with the goal of focusing cesses at the origin of the continuum of this report. attention on a few AGN for intensive emission. The variation time scales in Similar programmes, albeit with a monitoring efforts and maintaining com­ particular give some indication of the size sometimes different overall emphasis, munication among the various individu­ of the emitting regions, an indirect clue to have been undertaken by other informal als and groups that carried out the actual the likely emission mechanisms. Of organisations du ring the same time observations. A key factor in the success potentially greater interest is the possibil­ Irame. For example, the European con­ of these efforts has been the ability to ity of eventually measuring time lags sortium LAG ("Lovers of Active Galax­ communicate and exchange information between continuum variations in different ies") wh ich was initiated by the late MV promptly via modern computer networks. wavebands because this can tell us about Penston, has carried out a spectroscopic The role of the AGN Watch has been the connection between various mecha­ and photometric monitoring of several multifold: (a) to define the scientific nisms producing continuum photons in AGN on the Canary Islands telescopes questions to be addressed, conceive the these systems. within the framework of the CCI 5% observational projects and coordinate In the framework of the so-calied international time programme (Robin­ the submission of the appropriate observ­ standard model, based on a massive son, 1994). ing proposals, (b) to ensure that data are black hole and accretion-disk system, we collected in a manner consistent with the assume that accreting material is distrib­ 2.2 A bit of recent history scientific goals, (c) to reduce the observa­ uted throughout the line-emitting regions: tional data and make these data sets the broad-line region (hereafter BLR) and In the early eighties, a number 01 available to the entire community, and (d) the narrow-line region (NLR), wh ich are groups involved in AGN studies under­ to perform the measurement and analy­ Somewhat arbitrarily distinguished by the took ultraviolet and optical monitoring sis of the data and publish the primary width of the lines they emit (ranging from programmes in an effort to probe the scientific results. as much as a few 10,000 km/s for the physics of AGN (for a review, see It was decided that detailed and broadest lines to only a few 100 km/s for Peterson, 1988). We note in particular the model-dependent interpretation would the narrow lines). An important probe 01 results of the so-calied NGC 4151 be left to individuals or sub-groups of the 25 16 ultraviolet spectra at a higher rate than in the original programme, once every two days with IUE between March 16 and ,........ May 27, 1993; during the second half of I 1I 0« 1 this campaign, HST spectra were ob­ N 14 I tained with an even higher frequency, 8 once per day. Detailed results of the ü h campaigns on NGC 5548 can be found I in Clavel et al. (1991), Peterson et al. Vl IIIHII It (1991), Korista et al. (1995) and refer­ QJ) 12 l-o r ences therein. The main conclusions llJ I I reached are as folIows: ~ I 1. The ultraviolet and optical continua ......0 vary with little, if any, phase difference '--' 1 between them. The continuum becomes u10 r.r... ~ 1 bluer as it becomes brighter and the shorter-wavelength continuum bands show sharper variations. 2. The variations of the highest ionisa­ tion lines (He 11, NV) lag behind the 1300 variations of the ultravioiet continuum by ....... N slightly less than 2 days, implying an I 8 inner radius of somewhat less than 2 Ü1200 light-days for the BLR. Its outer radius, ~ ~ 11 from the CIII] and Balmer lines, is I l Vl li 1 1 1 somewhat larger than 20 Iight-days. QJ) q\#lt I I 3. There are some indications that the l-o 11 llJ1100 ~ I jl 11 higher radial-velocity gas (line wings) ~ I I fIlII responds more rapidly than the lower I radial-velocity gas (Iine core), suggesting 0..... 11 "-" 11 1 a virialised BLR c10ud system. ..--..1000 co. I ::c: ~l 3.2 Where ESO comes on the "-" I r.r... tl I stage, the NGC 3783 campaign 900 In order to improve our understanding of the size and structure of the BLR and to test the generality of the NGC 5548 results, it was deemed to be desirable to Figure 1: The light-curves ot the optical continuum (top panel) and ot Hß (10 wer panel) trom the carry out similar programmes on other AGN in NGC 3783 during the ESO campaign. AGN in order to map the AGN luminosity vs. BLR size plane. Therefore, two other targets with different absolute luminosities were se­ AGN Watch collaboration, as weil as to ground-based and space-based obser­ lected, NGC 3783 (AGN Watch 11) and other interested parties. The AGN Watch vatories. Fairall 9 (AGN Watch IV), both observ­ data are at the disposal of the entire able from the southern hemisphere. community once the primary scientific 3. 1 First experience, the NGC 5548 These AGN Watch campaigns relied results have been published by the campaign heavily on ESO telescopes for the collaboration. ground-based component. The first AGN Watch project was an The AGN Watch campaign 11 was set eight-month monitoring campaign (AGN up to monitor NGC 3783 with IUE for 69 The How Watch campaign I) on the Seyfert 1 epochs from December 21, 1991 to July gaiaxy NGC 5548. IUE observations 29, 1992, once every 4 days for the first As many of the strongest and most were made once every four days be­ 172 days and once every 2 days for the important broad lines in AGN spectra are tween December 14, 1988 and August 7, final 50 days. Simultaneous optical and located in the ultraviolet domain, space­ 1989, for a total of 60 epochs. near-infrared observations were collect­ based observations are critical for under­ Ground-based observations were col­ ed from ESO and CTIO (Chile), CASLEO standing the BLR. Therefore, the initial lected with various telescopes in the (Argentina), Lowell Observatory (USA), focus of the AGN Watch efforts was UV northern hemisphere during this entire Vainu Bappu Observatory (India) and spectroscopy using the International UI­ period, and the ground-based compo­ SAAO (South Africa).
Recommended publications
  • PRECISE PHOTOMETRIC TRANSIT FOLLOW-UP OBSERVATIONS of FIVE CLOSE-IN EXOPLANETS : UPDATE on THEIR PHYSICAL PROPERTIES Aritra Chakrabarty†1, 2 and Sujan Sengupta‡1
    Draft version May 28, 2019 Typeset using LATEX default style in AASTeX62 PRECISE PHOTOMETRIC TRANSIT FOLLOW-UP OBSERVATIONS OF FIVE CLOSE-IN EXOPLANETS : UPDATE ON THEIR PHYSICAL PROPERTIES Aritra Chakrabartyy1, 2 and Sujan Senguptaz1 1Indian Institute of Astrophysics, Koramangala 2nd Block, Bangalore 560034, India 2University of Calcutta, Salt Lake City, JD-2, Kolkata 750098, India (Accepted for publication in the Astronomical Journal) ABSTRACT We report the results of the high precision photometric follow-up observations of five transiting hot jupiters - WASP-33b, WASP-50b, WASP-12b, HATS-18b and HAT-P-36b. The observations are made from the 2m Himalayan Chandra Telescope at Indian Astronomical Observatory, Hanle and the 1.3m J. C. Bhattacharyya Telescope at Vainu Bappu Observatory, Kavalur. This exercise is a part of the capability testing of the two telescopes and their back-end instruments. Leveraging the large aperture of both the telescopes used, the images taken during several nights were used to produce the transit light curves with high photometric S/N (> 200) by performing differential photometry. In order to reduce the fluctuations in the transit light curves due to various sources such as stellar activity, varying sky transparency etc. we preprocessed them using wavelet denoising and applied Gaussian process correlated noise modeling technique while modeling the transit light curves. To demonstrate the efficiency of the wavelet denoising process we have also included the results without the denoising process. A state-of-the-art algorithm used for modeling the transit light curves provided the physical parameters of the planets with more precise values than reported earlier.
    [Show full text]
  • Indian Institute of Astrophysics
    Indian Institute of Astrophysics The Indian Institute of Astrophysics (IIA), an autonomous research institute funded by the Department of Science & Technology, is devoted to research in Astronomy & Astrophysics, and the Related Physics and Instrumentation. IIA has a rich history of over two centuries and has to its credit some important discoveries such as those of the Evershed effect, atmosphere on Jupiter's satellite Ganymede, the rings around Uranus and the asteroid Ramanujan. Research Programmes Research fields in Astronomy & Astrophysics at IIA range from the studies of the nearby sun and solar system objects to the distant galaxies, quasars and gamma-ray burst sources. Sun and the Solar System - Solar activity - sunspots, prominences; Solar Chromosphere and Corona; Comets; Solar Terrestrial relationships Stellar Physics - Formation and Evolution of Stars; Comet Machholz Planetary Nebulae; Stellar Atmospheres; Star observed from VBO Clusters; Stellar Variability; Novae; Supernovae; Brown Dwarfs, Pulsars Solar Corona Extragalactic Astronomy - Star formation in galaxies; Activity in Galaxies; Groups and Clusters of Galaxies; Gamma-ray burst events Theoretical Astrophysics and Related Physics - Magnetohydrodynamic and Radiative Processes in Astrophysical Objects; Structure of Neutron Stars; Blackhole Physics; Structure and Dynamics of Galaxies and Star Clusters; General Theory of Relativity; Cosmology; Astroparticle Physics; Atomic and Molecular Physics NGC 925 observed with the 2m HCT Instrumentation - UV Imaging Telescope for the Indian Astronomy Satellite (ASTROSAT); back-end instruments for the various observing facilities. Facilities The Institute's research activities are supported by excellent facilities at its headquarters in Bangalore and its field stations at Kodaikanal, Kavalur, Gauribidanur, Hosakote and Hanle. The Solar Observatory: located at Kodaikanal consists of a Tower Tunnel Telescope, Spectroheliographs and Ionosondes.
    [Show full text]
  • Indian Institute of Astrophysics Bangalore 560034
    Indian Institute of Astrophysics Bangalore 560034 The Indian Institute of Astrophysics (IIA) traces its origin to relativity, cosmology, astroparticle physics, atomic and a small private observatory set up during 1786 at Madras molecular physics. (Chennai), which led to the establishment of the Solar Observatory in 1899 at Kodaikanal. In 1971, the Facilities: Kodaikanal Observatory was made into an autonomous institution under the Department of Science & Technology, Kodaikanal Observatory: This Observatory has been the Government of India. With a rich history of over 200 years, principal center of activity in observational solar physics, IIA is a premier institute in the country devoted to basic for over a century. At present, the main facility is the solar research, instrumentation and training in astronomy, tunnel telescope fitted with a spectrograph, which is in astrophysics and related physical sciences. regular use since 1962; a spectro-polarimeter has also been added. This observatory has a unique collection of the Sun’s photographic images archived over the last hundred years. These images are now being digitized to study the finer details of the Sun, Sun-weather pattern etc. Daily observations of the solar photosphere and chromosphere are being obtained as a part of the synoptic study. It was in this Observatory, John Evershed discovered the radial motion in sunspots, now known as the Evershed effect, in 1909. The Indian Institute of Astrophysics, Bangalore. Research Programmes: Sun and the Solar System - Solar activity, sunspots, prominences, solar chromosphere, comets, asteroids, eclipse observations, radio observations of the solar corona. Stellar Physics - Formation and evolution of stars, chemical abundance of elements, planetary nebulae, planetary rings, The solar tunnel telescope at the Kodaikanal observatory.
    [Show full text]
  • Arxiv:1505.04244V1 [Astro-Ph.IM] 16 May 2015 .Srinivasulu G
    Bull. Astr. Soc. India (2014) 42, 1–19 A new three-band, two beam astronomical photo-polarimeter 1 2 1 3 G. Srinivasulu ∗, A. V. Raveendran , S. Muneer †, M. V. Mekkaden , N. Jayavel4, M. R. Somashekar1, K. Sagayanathan1, S. Ramamoorthy1, 5 6 M. J. Rosario and K. Jayakumar ‡ 1Indian Institute of Astrophysics, Bangalore 560034, India 2399, "Shravanam", 2nd Block, 9th Phase, J P Nagar, Bangalore 560108, India 3No 82, 17E Main, 6th Block, Koramangala, Bangalore 560095, India 4No 22, Bandappa lane, New Byappanahalli, Bangalore 560038, India 5210, 4th Main, Lakshmi Nagar Extn, Porur, Chennai 600116, India 624, Postal Nagar, Ampuram, Vellore-632009, India Received 2014 July 23; revised ; accepted Abstract. We designed and built a new astronomical photo-polarimeter that can meas- ure linear polarization simultaneously in three spectral bands. It has a Calcite beam- displacement prism as the analyzer. The ordinary and extra-ordinary emerging beams in each spectral bands are quasi-simultaneously detected by the same photomultiplier by using a high speed rotating chopper. A rotating superachromatic Pancharatnam halfwave plate is used to modulate the light incident on the analyzer. The spectral bands are isolated using appropriate dichroic and glass filters. We show that the reduction of 50% in the efficiency of the polarimeter because of the fact that the intensities of the two beams are measured alternately is partly com- pensated by the reduced time to be spent on the observation of the sky background. The use of a beam-displacement prism as the analyzer completely removes the polar- ization of backgroundskylight, which is a major source of error during moonlit nights, especially, in the case of faint stars.
    [Show full text]
  • Multi-Band Observations of Gamma Ray Bursts
    J. Astrophys. Astr. (2002) 23, 123–127 Multi-band Observations of Gamma Ray Bursts S. G. Bhargavi Indian Institute of Astrophysics, Bangalore 560 034, India email: [email protected] Abstract. This talk focuses on the various aspects we learnt from multi- band observations of GRBs both, before and during the afterglow era. A statistical analysis to estimate the probable redshifts of host galaxies using the luminosity function of GRBs compatible with both the afterglow redshift data as well as the overall population of GRBs is discussed. We then address the question whether the observed fields of GRBs with precise localizations from third Inter-Planetary Network (IPN3) contain suitable candidates for their host galaxies. Key words. Gamma rays: bursts—CCD: observations—Methods: statistical. 1. Studies before the afterglow era In 1994–95 we undertook a program to carry out an optical survey of a few GRB fields chosen from the IPN3 catalog (Hurley 1995, private communication; Laros et al. 1998; Hurley et al. 2000). Deep CCD imaging of these fields was carried out at the 2.34 m and 1.02 m telescopes of Vainu Bappu Observatory (VBO), Kavalur until 1998. It was an attempt to identify the transient/quiescent counterparts of GRBs on the basis of photometric studies. For details on observations and photometric data analysis see Bhargavi (2001). In similar investigations the observers either looked for peculiar objects (Vrba et al. 1995) or an over-abundance of certain class of objects (Larson 1997) in their deep imaging surveys of IPN GRBs. None of our efforts led to an identification of a GRB counterpart.
    [Show full text]
  • 1 Introduction 2 Vainu Bappu Observatory, Kavalur, Indian Institute
    GROUND-BASED OPTICAL ASTRONOMY IN INDIA M.Parthasarathy, Indian Institute of Astrophysics, Bangalore - 560034 India Abstract There is considerable progress in the ground based optical astronomy in India during the last 25 years. During the period 1965 to 1995 four one meter class telescopes and one 2.3m telescope have corne into operation. The number of users of these facilities has increased considerably. The existing optical telescpes in India are heavily over-subscribed and are not large enough for observing fainter stars and faint and distant galaxies . There is an urgent need to set up at good sites in India 4m class new technology telescopes and a few 1m and 2m class telescopes equipped with upto date auxiliary instruments. 1 Introduction During the last 30 years, a number of telescopes have become available in India for astronomical observations over different regions of the electromagnetic spectrum ranging from Gamma-rays, X-rays, optical, infrared and radio wavelength regions. In this paper the existing facilities for ground-based optical astronomy in India are described. The research work in optical astronomy in India and future plans to set up new 2m to 4m class telescopes are also described. There are five major existing optical telescopes in India: (i) a 1m Carl-Zeiss telescope at Naini Tal, (ii) a 1.2m Baker reflector at Rangapur near Hyderbad, (iii) a 1m Carl-Zeiss telescope and a 2.3m Vainu Bappu Telescope (VBT) at Kava1ur, (iv) a 1.2m infrared telescope at Gurusikhar near Mount Abu. There are also three main solar observatories in India at Kodaikanal, Udaipur and N aini Tal.
    [Show full text]
  • Productivity of Indian Telescopes: Impact Analysis Through Scientometric Methods by Meera B.M
    Productivity of Indian Telescopes: Impact Analysis through Scientometric methods By Meera B.M. & Manjunath M. Raman Research Institute, Bangalore, India Abstract: This paper aims to study the productivity of modern Indian telescopes installed after India attained Data representation and analysis independence from colonial rule. However, there is one telescope which was built during colonial rule and still Collective productivity data from all telescopes is represented below functional. Productivity measure is the number of papers published from 14 telescopes under study. Astronomical data A comprehensive table (1) represents data from 14 telescopes of India which are under study. observed through these telescopes gets transformed into research papers. Such papers further get used by their peers and Telescope Name Telescope type Year Year of Total No. Total Average H-Index Total No. of get cited. This is the actual impact of the telescopes in terms of scholarship. This aspect will be analyzed in this paper established publicat of papers No. of citations Number Authors Total Productivity of Total Refereed using scientometric indicators. ion of published citations per of with 14 Indian Telescopes Metrics first received paper authors Foreign Number of papers 1,643 1,144 Indian Astronomical studies dates back to 1500 B C. Astronomy was article affiliation Introduction: (%) Total reads 326,351 310,594 considered as “Auxiliary discipline” with the study of Veda (Knowledge base originated in Kodaikanal Solar Observatory, Solar Observatory 1899 1904 361 689 1.9 15 395 165 (41%) Kodaikanal Average reads 198.6 271.5 ancient India comprising of large body of text). Original application of astronomy was Ooty Radio Telescope, Ooty Radio Telescope 1970 1971 114 792 6.9 16 132 30 (23%) Number of citations 13,599 13,083 religious and later this had Greek influence during 4th century.
    [Show full text]
  • Early Time Optical Spectroscopy of Supernova SN 1998S
    A&A 367, 506–512 (2001) Astronomy DOI: 10.1051/0004-6361:20000427 & c ESO 2001 Astrophysics Early time optical spectroscopy of supernova SN 1998S G. C. Anupama, T. Sivarani, and G. Pandey Indian Institute of Astrophysics, II Block Koramangala, Bangalore 560 034, India Received 26 June 2000 / Accepted 4 December 2000 Abstract. We present medium-resolution optical spectra of the type II supernova SN 1998S obtained during the pre-maximum, maximum and early decline phases. The early decline spectra show complex Balmer line profiles: a narrow P-Cygni emission feature superimposed on a broad emission. The narrow emission has a redshift similar to that of the host galaxy, indicating its origin from a pre-supernova circumstellar material. The Hα luminosity of the broad component implies a shell mass of ∼0.1 M for the supernova ejecta, while the luminosity of the −4 −1 narrow component implies a mass loss rate of 10 M yr for the precursor. The photospheric temperature of the supernova shell decreased from a value of 18 400 2900 K on day 17 to a value of 7500 1200 K on day 44. The observations indicate SN 1998S belongs to type IIn supernovae where the supernova ejecta dynamically interact with a pre-supernova circumstellar material. Key words. supernovae: general – supernovae: individual (SN 1998S) 1. Introduction or broad (FWHM ∼ 5000–10000 km s−1) base. The cen- troid of the base is blue-shifted relative to the narrow por- The supernova SN 1998S was discovered in the SCII.2 tion of the profile. The continuum is bluer than normal galaxy NGC 3877 on 1998 March 2.68 by Z.
    [Show full text]
  • LIEMFO-Anupama
    Follow-up of GW-EM in Optical and NIR G.C. Anupama Indian Institute of Astrophysics EM counterparts of GW Sources Electromagnetic Observations • Nature of GW source – BH events, BNS, Collapse of massive stars, WD collapse (?) • Pinning down the position of the sources • Identify the host galaxy and environment • Suite of telescopes and instruments spread across the globe • (γ − rays, X-rays, UV), Optical, NIR, (mm, radio) - Photometry, spectroscopy, polarization • Wide field optical and NIR transient search observations • Deep observations – several transients – important to have rapid spectroscopic observations for source classification • Long term monitoring Observing Facilities in India • Longitudinal Advantage Existing Facilities Vainu Bappu Observatory ■ Established in late 1960s ■ Location: 12d 34m N; 78d 50m E; Altitude: 720m ■ 175kms South-East of Bangalore 2.3 metre Vainu Bappu Telescope F/3.25 primary mirror; F/13 Cassegrain focus • Cassegrain OMR low resolution spectrograph (R=500-2000) • VBT Fiber-fed Echelle Spectrograph (Prime focus fiber feed; R=30000, 70000) 1 metre Zeiss telescope F/13 Cassegrain focus • Low resolution spectrograph (UAGS) • PhotoPolarimeter 1.3 metre Telescope F/8 Cassegrain focus; 30 arcminute corrected field. • 2K X 4K imager and 1K X 1K rapid imager • FoV: 5.5 X 11 arcmin Indian Astronomical Observatory Mt. Saraswati (Digpa-ratsa Ri), Hanle ■ Location: 32d46m46s N; 78d57m51s E ■ High altitude Gamma Ray Array Telescope (HAGAR) ■ Altitude: 4500m (15000ft) ■ 22m Imaging Cherenkov Telescope (MACE) – under
    [Show full text]
  • Development of Image Motion Compensation System for 1.3 M Telescope at Vainu Bappu Observatory
    RAA 2020 Vol. 20 No. 1, 12(14pp) doi: 10.1088/1674–4527/20/1/12 R c 2020 National Astronomical Observatories, CAS and IOP Publishing Ltd. esearch in Astronomy and http://www.raa-journal.org http://iopscience.iop.org/raa Astrophysics Development of image motion compensation system for 1.3 m telescope at Vainu Bappu Observatory Sreekanth Reddy Vallapureddy⋆, Ravinder Kumar Banyal, Sridharan Rengaswamy, P Umesh Kamath and Aishwarya Selvaraj Indian Institute of Astrophysics, Bangalore 560034, India; [email protected] Received 2019 July 16; accepted 2019 August 28 Abstract We developed a tip-tilt system to compensate the turbulence induced image motion for the 1.3m telescope at Vainu Bappu Observatory, at Kavalur. The instrument is designed to operate at the visible wavelength band (480 700nm) with a field of view of 1′ 1′. The tilt corrected images have demonstrated − × up to 57% improvement in image resolution and a corresponding peak intensity increase by a factor of ≈ 2.8. A closed-loop correction bandwidth of 26Hz has been achieved with on-sky tests and the root ≈ ≈ mean square motion of the star image has been reduced by a factor of 14. These results are consistent ∼ with theoretical and numerical predictions of wave-front aberrations caused by atmospheric turbulence and image quality improvement expected from a real-time control system. In this paper, we present details of the instrument design, laboratory calibration studies and quantify its performance on the telescope. Key words: adaptive optics — atmospheric effects — high angular resolution 1 INTRODUCTION times also called the angle of arrival fluctuations.
    [Show full text]
  • Observing Facilities of IIA
    Observing Facilities of IIA IIA Bangalore The Indian Institute of Astrophysics (IIA), with its headquarters in Bangalore (Karnataka state), India, is a premier national institute of India for the study of and research into topics pertaining to astronomy, astrophysics and related subjects. The Institute has a network of laboratories and observatories located in various places in India, including Kodaikanal (the Kodaikanal Solar Observatory), Kavalur (the Vainu Bappu Observatory), Gauribidanur, Hanle (the Indian Astronomical Observatory) and Hosakote. Indian Astronomical Observatory Vainu Bappu Observatory, Kavalur The Indian Astronomical Observatory, the 2.34m VBT high-altitude station of IIA is situated at an M.K. V. Bappu, the founder altitude of 4500 metres above mean sea Director of IIA had set up an level to the north of Western Himalayas. A observatory for the night time 2-m optical infrared telescope (HCT) is observations at Kavalur located in installed at the observatory. This telescope javadi hills of Tamilnadu, to access is remotely operated from CREST, the celestial objects both in the north Hosakote, using a dedicated satellite links and southern hemispheres. With a 15 and being used by Indian astronomers inch refractor and a 30 inch reflector since 2001. Telescope is equipped with instruments called HFOSC & NIRCam. operating from late 60s, a 1M Carl Observatory also host 0.5m robotic Zeiss reflector was installed in 1973. telescope for monitoring transient objects Development of an indigenous as well as a Gamma ray telescope2m HAGAR HCT 2.34M reflector was initiated by Dr to study AGN’s pulsars, and host of Bappu. The telescope was completed astrophysical sources.
    [Show full text]
  • Once in a Blue Moon: Detection of 'Bluing' During Debris Transits in The
    Once in a blue moon: detection of ‘bluing' during debris transits in the white dwarf WD 1145+017 Item Type Article Authors Hallakoun, N.; Xu (), S.; Maoz, D.; Marsh, T. R.; Ivanov, V. D.; Dhillon, V. S.; Bours, M. C. P.; Parsons, S. G.; Kerry, P.; Sharma, S.; Su, K.; Rengaswamy, S.; Pravec, P.; Kušnirák, P.; Kučáková, H.; Armstrong, J. D.; Arnold, C.; Gerard, N.; Vanzi, L. Citation Once in a blue moon: detection of ‘bluing' during debris transits in the white dwarf WD 1145+017 2017, 469 (3):3213 Monthly Notices of the Royal Astronomical Society DOI 10.1093/mnras/stx924 Publisher OXFORD UNIV PRESS Journal Monthly Notices of the Royal Astronomical Society Rights © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. Download date 06/10/2021 05:37:47 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/625505 MNRAS 469, 3213–3224 (2017) doi:10.1093/mnras/stx924 Advance Access publication 2017 April 17 Once in a blue moon: detection of ‘bluing’ during debris transits in the white dwarf WD 1145+017 N. Hallakoun,1,2‹ S. Xu (),2 D. Maoz,1 T. R. Marsh,3 V. D. Ivanov,4,2 V. S. Dhillon,5,6 M. C. P. Bours,7 S. G. Parsons,5 P. Kerry,5 S. Sharma,8 K. Su,9 S. Rengaswamy,10 P. Pravec,11 P. Kusnirˇ ak,´ 11 H. Kucˇakov´ a,´ 12 J. D. Armstrong,13,14 C. Arnold,13 N. Gerard13 and L.
    [Show full text]