The Nesting Biology of the Red-Tailed Black Cockatoo

Total Page:16

File Type:pdf, Size:1020Kb

The Nesting Biology of the Red-Tailed Black Cockatoo The nesting biology of the Red-tailed Black Cockatoo (Calyptorhynchus banksii macrorhynchus) and its management implications in the Top End of Australia Nina Kurucz Thesis submitted for the degree of Masters of Science by research at the School of Biological Sciences, Northern Territory University, Australia. November, 2000 Copyright © 2000 School of Biological Sciences, Northern Territory University This PDF has been automatically generated and though we try and keep as true to the original as possible, some formatting, page numbering and layout elements may have changed. Please report any problems to [email protected]. Declaration I hereby declare that the work herein, now submitted as a thesis for the degree of Masters by research, is the result of my own investigations, and all references to ideas and work of other researchers have been specifically acknowledged. I hereby certify that the work embodied in this thesis has not already been accepted in substance for any degree, and is not being currently submitted in candidature for any other degree. Nina Kurucz 17/10/2000 Abstract In the Top End of the Northern Territory of Australia Red-tailed Black Cockatoos have been known to nest in hollows in Eucalyptus forests. However no detailed description of nest and food requirements exists. This study determines suitable nesting and foraging habitat, describes attributes of nesting trees, the density, availability and spatial distribution of these trees, daily feeding patterns, seed availability and movement by C. b. macrorhynchus during the breeding season. Based on the results I aimed to assess the feasibility of using the recently developed harvesting management program for C. b. macrorhynchus on privately owned land as a means to encourage protection of nesting habitat. Results show that the birds nest in the widespread open Eucalyptus miniata / E. tetrodonta forests and E. papuana / E. polycarpa woodlands. Up to 81 % of trees with a DBH > 30 cm contain hollows large enough for a Red-tailed Black Cockatoo to enter (hollow entrance >15 cm). Other important nest tree features are inside hollow depth (between 40 and 130 cm) and the entrance height above ground (> 9m). Trees with hollows large enough for Cockatoos to enter occur in low densities of 0.5 − 1 tree per hectare and are spatially distributed in a uniform fashion (P = 0.0087). Only 5.8 % of such trees are suitable for nesting. Foraging occurs in Eucalyptus low open - woodlands, woodlands and in coastal vegetation. Foraging sites are close to nest sites and fires are an important feature of the sites that tend to be recently burnt, providing easy access to grass seeds, the major component of the bird's diet. During the whole breeding season (March – September) 85 % of the birds feed in the early morning and late afternoon, using sites until seed availability significantly decreases (P<0.031). The results of this study support previous critiques on the Cockatoo management program. Nest densities are mostly too low to offer returns that provide an economically viable alternative to other forms of land use, including horticulture. Protection of C. b. macrorhynchus nesting habitat in the Darwin region in the long term will require measures additional to any incentives provided by the current management plan. Acknowledgement I would like to express my thanks and appreciation to all those who have contributed to this thesis: My supervisor, Peter Whitehead for invaluable guidance and revision, without this work would not have been possible. My Co - supervisor Richard Noske for revision. Simon Stirrat for administrative assistance Peter McGrath for assistance and sharing knowledge of Red-tailed Black Cockatoos. Peter Brocklehurst for providing the NT vegetation map and assisting with statistical analyses. David Howe and Nigel Saunders for providing maps and information Keith Ferdinands and Philip McMahon for assistance with GIS. Karl - Heinz Niendorf for statistical advice Cain Kalsbeek for fieldwork assistance, financial and emotional support. Baerbel Kurucz for fieldwork assistance, financial and emotional support. All assistants helping with fieldwork, especially tree climbing. v Table of Contents GENERAL INTRODUCTION AND THE BIOLOGICAL BACKGROUND ............. 1 1.1 General introduction ........................................................................................ 1 1.2 Biology of Red-tailed Black Cockatoos .......................................................... 2 1.2.1 Description of species and subspecies ................................................. 2 1.2.2 Distribution and current status ............................................................. 4 1.2.3 Habitat .................................................................................................. 5 1.2.4 Reproduction ........................................................................................ 6 1.3 Aim .................................................................................................................. 8 THE NESTING BIOLOGY OF C. b. macrorhynchus .................................................. 9 SUMMARY ........................................................................................................... 9 2.1 Introduction ................................................................................................... 10 2.2 Aim ................................................................................................................ 13 2.3 Methods ......................................................................................................... 13 2.3.1 Climate and landscape ........................................................................ 13 2.3.2 Study sites .......................................................................................... 14 2.3.3 Vegetation survey ............................................................................... 15 2.3.4 Tree stand structure ............................................................................ 16 2.3.5 Nesting trees ....................................................................................... 17 2.4 Data analyses ................................................................................................. 18 2.4.1 Vegetation survey ............................................................................... 18 2.4.2 Tree stand structure ............................................................................ 19 2.4.3 Nesting trees ....................................................................................... 20 2.5 Results ........................................................................................................... 22 2.5.1 Vegetation pattern at nest sites ........................................................... 22 2.5.2 Tree stand structure ............................................................................ 29 vi 2.5.3 Nesting trees: ...................................................................................... 34 2.6 Discussion ...................................................................................................... 42 2.6.1 Vegetation pattern at nest sites ........................................................... 42 2.6.2 Nesting trees ....................................................................................... 46 FEEDING BIOLOGY OF C. b. macrorhynchus ........................................................ 48 Summary .............................................................................................................. 48 3.1 Introduction ................................................................................................... 49 3.2 Methods ......................................................................................................... 51 3.2.1 Study sites .......................................................................................... 51 3.2.2 Vegetation survey ............................................................................... 52 3.2.3 Diet ..................................................................................................... 53 3.2.4 Feeding effort ..................................................................................... 54 3.2.5 Movement and flock behaviour .......................................................... 55 3.3 Analysis ......................................................................................................... 56 3.3.1 Vegetation survey ............................................................................... 56 3.3.2 Diet ..................................................................................................... 57 3.3.3 Feeding effort ..................................................................................... 57 3.3.4 Movement ........................................................................................... 58 3.4 Results ........................................................................................................... 59 3.4.1 Vegetation survey ............................................................................... 59 3.4.2 Diet ..................................................................................................... 67 3.4.3 Feeding effort ..................................................................................... 69 3.4.4 Movement ........................................................................................... 73 3.5 Discussion .....................................................................................................
Recommended publications
  • Behavior and Attendance Patterns of the Fork-Tailed Storm-Petrel
    BEHAVIOR AND ATTENDANCE PATTERNS OF THE FORK-TAILED STORM-PETREL THEODORE R. SIMONS Wildlife Science Group, Collegeof Forest Resources, University of Washington, Seattle, Washington 98195 USA ABSTRACT.--Behavior and attendance patterns of breeding Fork-tailed Storm-Petrels (Ocea- nodromafurcata) were monitored over two nesting seasonson the Barren Islands, Alaska. The asynchrony of egg laying and hatching shown by these birds apparently reflects the influence of severalfactors, including snow conditionson the breedinggrounds, egg neglectduring incubation, and food availability. Communication between breeding birds was characterized by auditory and tactile signals.Two distinct vocalizationswere identified, one of which appearsto be a sex-specific call given by males during pair formation. Generally, both adults were present in the burrow on the night of egg laying, and the male took the first incubation shift. Incubation shiftsranged from 1 to 5 days, with 2- and 3-day shifts being the most common. Growth parameters of the chicks, reproductive success, and breeding chronology varied considerably between years; this pre- sumably relates to a difference in conditions affecting the availability of food. Adults apparently responded to changes in food availability during incubation by altering their attendance patterns. When conditionswere good, incubation shifts were shorter, egg neglectwas reduced, and chicks were brooded longer and were fed more frequently. Adults assistedthe chick in emerging from the shell. Chicks became active late in the nestling stage and began to venture from the burrow severaldays prior to fledging. Adults continuedto visit the chick during that time but may have reducedthe amountof fooddelivered. Chicks exhibiteda distinctprefledging weight loss.Received 18 September1979, accepted26 July 1980.
    [Show full text]
  • Failing to Conserve Leadbeater's Possum and Its Mountain Ash Forest
    CORE Metadata, citation and similar papers at core.ac.uk Provided by The Australian National University Failing to conserve Leadbeater’s Possum and its Mountain Ash forest habitat David Blair1, David Lindenmayer1 &Lachlan McBurney1 1Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601 Corresponding author: [email protected] The conservation of the Critically Endangered Leadbeater’s Possum Gymnobelideus leadbeateri in Victoria’s Mountain Ash Eucalyptus regnans forests is one of the most controversial native mammal conservation issues in Australia. Much of the controversy results from long-running conflicts between the demands of the native forest logging industry and associated impacts on Leadbeater’s Possum and its Mountain Ash forest habitat. Here we argue that despite a legislative obligation to protect Leadbeater’s Possum and some limited recent improvements in management, conservation efforts for the species have gone backwards over the past decade. The key problems we identify include that the Victorian Government has: (1) maintained levels of wood production that are too high given the amount of the forest estate that was burned in 2009, (2) failed to substitute clearfell logging practices with more ecologically-sensitive Variable Retention Harvesting Systems, (3) ignored the science (including by its own researchers) on the need for a large protected area for Leadbeater’s Possum, (4) altered key definitions such as those for mature trees and old growth that have substantially weakened the ability to protect Leadbeater’s Possum, and (5) overlooked the array of forest values beyond timber production (such as water and tourism) and which make a greater contribution to the economy.
    [Show full text]
  • Beak and Feather Disease Viru
    Fact sheet Beak and feather disease virus (BFDV) is the causative agent of psittacine beak and feather disease (PBFD), an endemic disease in Australia’s wild parrot populations. Descriptions of parrots with feather loss consistent with the disease date back to the late 1800s (Ashby 1907). The virus is believed to have originated in Australia sometime following the separation of the continent from Gondwanaland, with spread to other parts of the world with modern movement of parrots as pet and aviary species . It has the potential to impact on several endangered Australian and non-Australian parrot populations and is listed as a key threatening process by the Australian government. Of late, the virus also has been identified in various non-psittacine species . Beak and feather disease virus is a 14 to 16 nm non-enveloped icosahedral DNA virus belonging to the family Circoviridae. Formerly, it was believed that the circoviruses recovered from a diverse range of psittacines were all antigenically similar. Doubt was cast on this theory when a virus that appeared to be serologically and genetically different was isolated from cockatiels (Nymphicus hollandicus) (Shearer et al. 2008). More recent research appears to indicate that psittacine circoviruses can be divided into two species and multiple viral strains. Based on work by Varsani et al. (2011), BFDV contains 14 strains, while budgerigar circovirus (BCV), a newly defined species to date only found in budgerigars (Melopsittacus undulates), contains three strains. However, it is likely that this number will continue to increase as shown by the discovery of two new distinct BFDV lineages in orange-bellied parrots (Neophema chrysogaster) (Peters et al.
    [Show full text]
  • The Potential Role of the Forest Product Commission's Midwest
    The Potential Role of the Forest Product Commission’s Midwest Pine Plantations as a Food Resource for Carnaby’s Cockatoo: A Concept Study using GPS and Satellite Tag Data A report for the Forest Products Commission – Western Australia Jill M. Shephard and Kristin S. Warren 2018 School of Veterinary and Life Sciences, Murdoch University Suggested Citation: Shephard, J.M. and Warren, K.S. 2018. The Potential Role of the Forest Product Commission’s Midwest Pine Plantations as a Food Resource for Carnaby’s Cockatoo: A Concept Study using GPS and Satellite Tag Data. Report for The Forest Products Commission, Western Australia. Ethics and Permit Statement: All tracking took place with approval of the Western Australian Department of Biodiversity, Conservation and Attractions under permit number: SF010448; and with Murdoch University Animal Ethics permit RW2768/15 and Australian Bird and Bat Banding Scheme (ABBBS) Banding Authority Number 1862. Acknowledgements: We gratefully acknowledge the financial support and in-kind assistance provided by Newmont Boddington Gold, South 32, PTI Architecture, The Department of Biodiversity, Conservation and Attractions WA, Perth Zoo and Kaarakin Black Cockatoo Conservation Centre in supporting the GPS and Satellite tracking work used in this report. Thank you to Willem Bouten for oversight of the UvA-BiTS tracking system, and to Karen Riley for endless hours in the field downloading data and completing flock follows. December 2018 Cover photograph by Georgia Kerr Midwest pine as a resource for Carnaby’s Cockatoo
    [Show full text]
  • INTRODUCED CORELLA ISSUES PAPER April 2014
    INTRODUCED CORELLA ISSUES PAPER April 2014 City of Bunbury Page 1 of 35 Disclaimer: This document has been published by the City of Bunbury. Any representation, statement, opinion or advice expressed or implied in this document is made in good faith and on the basis that the City of Bunbury, its employees and agents are not liable for any damage or loss whatsoever which may occur as a result of action taken or not taken, as the case may be, in respect of any representation, statement, opinion or advice referred to herein. Information pertaining to this document may be subject to change, and should be checked against any modifications or amendments subsequent to the document’s publication. Acknowledgements: The City of Bunbury thanks the following stakeholders for providing information during the drafting of this paper: Mark Blythman – Department of Parks and Wildlife Clinton Charles – Feral Pest Services Pia Courtis – Department of Parks and Wildlife (WA - Bunbury Branch Office) Carl Grondal – City of Mandurah Grant MacKinnon – City of Swan Peter Mawson – Perth Zoo Samantha Pickering – Shire of Harvey Andrew Reeves – Department of Agriculture and Food (WA) Bill Rutherford – Ornithological Technical Services Publication Details: Published by the City of Bunbury. Copyright © the City of Bunbury 2013. Recommended Citation: Strang, M., Bennett, T., Deeley, B., Barton, J. and Klunzinger, M. (2014). Introduced Corella Issues Paper. City of Bunbury: Bunbury, Western Australia. Edition Details: Title: Introduced Corella Issues Paper Production Date: 15 July 2013 Author: M. Strang, T. Bennett Editor: M. Strang, B. Deeley Modifications List: Version Date Amendments Prepared by Final Draft 15 July 2013 M.
    [Show full text]
  • Natural History and Breeding Behavior of the Tinamou, Nothoprocta Ornata
    THE AUK A QUARTERLY JOURNAL OF ORNITHOLOGY VoL. 72 APRIL, 1955 No. 2 NATURAL HISTORY AND BREEDING BEHAVIOR OF THE TINAMOU, NOTHOPROCTA ORNATA ON the high mountainous plain of southern Peril west of Lake Titicaca live three speciesof the little known family Tinamidae. The three speciesrepresent three different genera and grade in size from the small, quail-sizedNothura darwini found in the farin land and grassy hills about Lake Titicaca between 12,500 and 13,300 feet to the large, pheasant-sized Tinamotis pentlandi in the bleak country between 14,000 and 16,000 feet. Nothoproctaornata, the third species in this area and the one to be discussedin the present report, is in- termediate in size and generally occurs at intermediate elevations. In Peril we have encountered Nothoproctabetween 13,000 and 14,300 feet. It often lives in the same grassy areas as Nothura; indeed, the two speciesmay be flushed simultaneouslyfrom the same spot. This is not true of Nothoproctaand the larger tinamou, Tinamotis, for although at places they occur within a few hundred yards of each other, Nothoproctais usually found in the bunch grassknown locally as ichu (mostly Stipa ichu) or in a mixture of ichu and tola shrubs, whereas Tinamotis usually occurs in the range of a different bunch grass, Festuca orthophylla. The three speciesof tinamous are dis- tinguished by the inhabitants, some of whom refer to Nothura as "codorniz" and to Nothoproctaas "perdiz." Tinamotis is always called "quivia," "quello," "keu," or some similar derivative of its distinctive call. The hilly, almost treeless countryside in which Nothoproctalives in southern Peril is used primarily for grazing sheep, alpacas,llamas, and cattle.
    [Show full text]
  • Dwi Astuti Zoological Division, R.C
    Phylogenetic relationships of cockatoos (Aves: Psittaciformes) based on DNA sequences of the seventh intron of nuclear β-fibrinogen gene Dwi Astuti Zoological Division, R.C. for Biology - Indonesian Institute of Sciences, Cibinong Science Centre Indonesia [email protected] O Cockatoos are belonged to Cacatuinae (Forshaw, 1989) order : Psittaciformes, Cockatoo Distribution family : Psittacidae (Forshaw, 1989) Calopsittacini Chalyptorhynchini Cacatuini Cacatuidae (del Hoyo,1998) Nymphicus subfamily: Cacatuinae Probosciger Calyptorhynchus Challocephalon Eolophus Cacatua tribes : Calopsittacini Chalyptorhynchini Cacatuini E. roseicapillus Probosciger N. hollandicus P. aterrimus C. baudinii C. fimbriatum C. sulphurea O In the world, there are six extant genera C. latirostris C.galerita Eolophus C. lathami C. alba Cacatua consisting of 21 cockatoo species C. banksii Nymphicus C. moluccensis leadbeateri C. funereus C. goffini Calyptorhynchus O Some previous authors have made grouping C. magnificus C. sanguinea Calyptorhynchus Callocephalon C. leadbeateri and evolutionary relationships of cockatoos C. ophthalmia Brown & Toft (1999) based on morphological characters, isozyme, C. haematuropygia and mitochondrial DNA. However, their MATERIALS AND METHODS relationships are still controversial, especially Phylogeny based on different characters concerning the position of Nymphycus Cacatua leadbeateri Blood samples from each individual of 15 species, Biochemical 6 genera, and 3 tribes of cockatoos hollandicus. Since the nuclear β-fibrinogen (Adams et
    [Show full text]
  • Vicforests' Koala Management
    VicForests Instruction Koala Management August 2015 1.0 Copyright © VicForests All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise, without prior written permission of VicForests. Document Information General Information File Path : J:\VICFORESTS\PUBLIC\SUST. FOREST. MAN. SYSTEM\ FOREST OPERATIONS MANUAL\WRITTEN INSTRUCTIONS\APPROVED\VICFORESTS INSTRUCTION – KOALA MANAGEMENT RecFind Ref: Description: This document outlines VicForests process for managing Koalas Author: C. Powell Creation Date: July 2015 Procedure Owner(s): Conservation Biologist Current Version: 1.0 Copy Number: 1 Review Period: Last review date: 5/08/2015 Next review date: 5/08/2018 Revision History New Version Revision Date Author(s) Old Version Revision Notes Reviewers The following positions should review the instruction prior to any significant amendment being approved General Manager Planning Manager Forest Performance Approval Approver Position / Resolution Date Nathan Trushell General Manager, Planning Signature: Unless stamped ‘CONTROLLED COPY’ in red, all printed copies of this procedure are uncontrolled. The latest version can be found in VicForests SharePoint– Sustainable Forest Management System Version: 1.0 Last Updated: 5/08/15 Procedure Owner: Conservation Biologist Page 2 of 9 TABLE OF CONTENTS 1. Purpose ....................................................................................................................................
    [Show full text]
  • Cockatiels Free
    FREE COCKATIELS PDF Thomas Haupt,Julie Rach Mancini | 96 pages | 05 Aug 2008 | Barron's Educational Series Inc.,U.S. | 9780764138966 | English | Hauppauge, United States How to Take Care of a Cockatiel (with Pictures) - wikiHow A cockatiel is a popular choice for a pet bird. It is a small parrot with a variety of color patterns and a head crest. They are attractive as well as friendly. They are capable of mimicking speech, although they can be difficult to understand. These birds are good at whistling and you can teach them to sing along to tunes. Life Expectancy: 15 to 20 years with proper care, and sometimes as Cockatiels as 30 years though this is rare. In their native Australia, cockatiels are Cockatiels quarrions or weiros. They primarily live in the Cockatiels, a region of the northern part of the Cockatiels. Discovered inthey are the smallest members of the cockatoo family. They exhibit many of the Cockatiels features and habits as the larger Cockatiels. In the wild, they live in large flocks. Cockatiels became Cockatiels as pets during the s. They are easy to breed in captivity and their docile, friendly personalities make them a natural fit for Cockatiels life. These birds can Cockatiels longer be trapped and exported from Australia. These little birds are gentle, affectionate, and often like to be petted and held. Cockatiels are not necessarily fond of cuddling. They simply want to be near you and will be very happy to see you. Cockatiels are generally friendly; however, an untamed bird might nip. You can prevent bad Cockatiels at an early age Cockatiels ignoring bad behavior as these birds aim to please.
    [Show full text]
  • Large Scale Multiplication of Casuarina Junghuhniana Miq
    Journal of Agricultural Science and Technology B 10 (2020) 98-105 doi: 10.17265/2161-6264/2020.02.005 D DAVID PUBLISHING Large Scale Multiplication of Casuarina junghuhniana Miq. Clonal Plants through Mini-cutting Technique Chezhian Palanisamy, Seenivasan Ramanathan, Selvakrishnan Palanisamy and Suresh Kumar Ganesan Department of Plantation, Tamil Nadu Newsprint and Papers Limited, Kagithapurm, Karur, Tamil Nadu 639 136, India Abstract: The modern concept of meeting the customer’s requirements in better products at low costs in a sustainable manner is possible only through innovative methods. The nodal cutting technique is the most widely used method for large scale propagation of Casuarina, Eucalyptus and other pulpwood species in India. Tamil Nadu Newsprint and Papers Limited (TNPL) has started large scale multiplication of Casuarina junghuhniana Miq. using mini-cutting technique from indoor clonal mini hedges raised in sand beds. When compared to stem/nodal cuttings, indoor clonal mini hedges raised in sand beds improve the rooting potential, quality of root systems and are time- and cost-saving. The productivity of cuttings is increased five times in indoor clonal hedge orchard than conventional stem/nodal cutting. The rooting percentage also improved to 90% without rooting hormone whereas the same is only 50% in stem cutting. The plant developed through mini-cutting technique has more lateral root system which helps the plants/trees to withstand during heavy winds. Replacing such stump derived stock plants by intensively managing indoor sand bed clonal mini hedges resulted in a noticeable enhancement of cutting capacity for adventitious rooting as well as the overall quality of the plants produced in much shorter period with easier and cheaper maintenance.
    [Show full text]
  • Rose-Breasted Cockatoo (Galah Cockatoo) Eolophus Roseicapilla
    Rose-breasted Cockatoo (Galah Cockatoo) Eolophus roseicapilla Class: Aves Order: Psittaciformes Family: Cacatuidae Characteristics: L. 35-38 cm; wt 300-435 gms. Females smaller. Gray back and flight feathers; pale pink crown; rose-red neck and underparts. Bone- colored beak; gray legs. Male: dark brown iris. Female: pink iris. Color of juveniles duller than adults. A highly intelligent, social and highly adaptable animal. Behavior: Bold and loud. Rely heavily on sense of sight. Highly social and long-lived. Bonded pairs have strong lifelong bonds with their partners. Preen facial feathers to show affection. Not highly territorial and often share roosting trees and food sources though minor squabbles frequently occur. Flocks congregate and forage on foot for food in open grassy areas. Communication consists of a high-pitched, splintered identifying call "chill chill; " harsher screeches when threatened, fighting or just having fun; and Range & Habitat: Mainland soft, muffled calls to initiate close contact. Australia and Tasmania in open habitats and urban areas such as Reproduction: Bonded pairs separate from flock and nest in tree cavities semi-desert, plains, open where a clutch of 2-5 white eggs is incubated 25 days by both parents. Fed with regurgitated food, chicks leave the nest about 49 days after hatching; woodland, farmlands and fields. reaching maturity in 4 years. Young have grayish plumage and a grey periophthalmic ring (naked area around their eyes) that fades as they approach maturity. Diet: Wild: grasses, herbs, seeds, nuts, berries, roots, green shoots, leaf buds, cereal crops, sunflower seeds; insects and larvae during breeding. Zoo: Cockatoo pellets, chopped fruit and vegetables, sunflower seeds (for training).
    [Show full text]
  • Guidelines for Reducing Cockatoo Damage(PDF, 973.6
    Guidelines for Reducing Cockatoo Damage Wildlife Management Methods Photo and Figure credits Cover photograph: Sulphur Crested Cockatoo – Nick Talbot Figure 1: Long-billed Corella – Drawing courtesy of Jess Davies Sulphur-crested Cockatoo and Galah – Drawings courtesy of Nic Day Figure 2: Kite to simulate bird of prey – Zoe Elliott Figure 3: Galah – Nick Talbot Figure 4: Long-billed Corella – Ian Temby Figure 5: Cockatoo damage to timber frames – Jim O’Brien Figure 6: Cockatoo damage to outdoor furniture – Ian Temby Figure 7: Cockatoo damage to sporting ground – Mark Breguet Figure 8: Corellas feeding on grain – Mark Breguet Figure 9: Cockatoo damage to crops – Ian Temby © The State of Victoria Department of Environment, Land, Water and Planning 2018 This work is licensed under a Creative Commons Attribution 4.0 International licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo and the Department of Environment, Land, Water and Planning (DELWP) logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ ISBN 978-1-76047-876-6 pdf/online Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.
    [Show full text]