Author Manuscript Published OnlineFirst on December 28, 2017; DOI: 10.1158/0008-5472.CAN-17-2876 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Familial and Somatic BAP1 Mutations Inactivate ASXL1/2-Mediated Allosteric Regulation of BAP1 Deubiquitinase by Targeting Multiple Independent Domains Hongzhuang Peng1, Jeremy Prokop2, Jayashree Karar1, Kyewon Park1, Li Cao3, J. William Harbour4, Anne M. Bowcock5, S. Bruce Malkowicz6, Mitchell Cheung7, Joseph R. Testa7, and Frank J. Rauscher, 3rd1 1Wistar Institute, Philadelphia, PA, USA; 2HudsonAlpha Genome Sequencing Center, Huntsville AL, USA; 3Washington University in St Louis, St. Louis, MO; 4University of Miami School of Medicine, Miami, FL, USA; 5Icahn School of Medicine at Mount Sinai, New York, NY; 6University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia PA, USA; 7Fox Chase Cancer Center, Philadelphia, PA, USA Running Title: BAP1 mutations disable ASXL1/2’s regulation of BAP1 activity Key Words: BAP1, PR-DUB, ASXL1/2, mutations, deubiquitinase, cancer, tumor susceptibility Correspondence: Frank J. Rauscher, 3rd, Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-898-0995; Fax: 215-898-3929; E-mail:
[email protected]; Joseph R. Testa, 5Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA; Phone: 215-728- 2610; Fax: 215-214-1623; E-mail:
[email protected] Précis: Combined computational and biochemical approaches demonstrate that the BAP1- ASXL2 interaction is direct and high affinity and that many BAP1 mutations act allosterically to inhibit BAP1-ASXL2 binding. 1 Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 28, 2017; DOI: 10.1158/0008-5472.CAN-17-2876 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.