Hidden Rust Models Benjamin Connault∗ Princeton University, Department of Economics Job Market Paper November 2014 Abstract This paper shows that all-discrete dynamic choice models with hidden state provide for general, yet tractable structural models of single-agent dynamic choice with unobserved persistence. I call such models hidden Rust models and I study their econometrics. First, I prove that hidden Rust models and more general dynamic discrete models have a generic identification structure, in a strong technical sense, as well as a stable one. Generic implies that checking identification at one parameter value is enough to get identification at almost every parameter value and I provide the tools to do so. Second, I prove that hidden Rust models have good time-series asymptotic properties despite their complicated dynamic structure. Third, I show that both the maximum likelihood estimator and Bayesian posteriors can be efficiently computed by carefully exploiting the structure of the model. These results are applied in a model of dynamic financial incentives inspired by Duflo, Hanna and Ryan (2012). Several lessons carry over to other dynamic discrete models with unobserved components. ∗princeton.edu/~connault and
[email protected] I am very grateful to Bo Honoré, Ulrich Müller, Andriy Norets and Chris Sims for continuous guidance and support. I also thank Sylvain Chassang, Kirill Evdokimov, Myrto Kalouptsidi, Michal Kolesár, Eduardo Morales, Mark Watson and participants at the Princeton Econometrics seminar for helpful discussion and comments. 1 1 Introduction 1.1 Overview The single-agent theory of dynamic discrete choice has been consolidating around a common framework often associated with John Rust’s seminal paper (Rust, 1987) and based on earlier work by Wolpin(1984), Miller(1984), Pakes(1986) and others.