Type I and II Interferons in the Anti-Tumor Immune Response
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developments in Cancer Immunoediting
Downloaded from http://www.jci.org on March 16, 2016. http://dx.doi.org/10.1172/JCI80004 REVIEW SERIES: CANCER IMMUNOTHERAPY The Journal of Clinical Investigation Series Editor: Yiping Yang From mice to humans: developments in cancer immunoediting Michele W.L. Teng,1,2 Jerome Galon,3 Wolf-Herman Fridman,4 and Mark J. Smyth2,5 1Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. 2School of Medicine, University of Queensland, Herston, Queensland, Australia. 3INSERM UMRS1138, Laboratory of Integrative Cancer Immunology, Paris, France. Université Paris Descartes, Paris, France. Cordeliers Research Centre, Université Pierre et Marie Curie Paris 6, Paris, France. 4Laboratory of Cancer, Immune Control and Escape, INSERM U1138, Cordeliers Research Centre, Paris, France. Université Pierre et Marie Curie, UMRS 1138, Paris, France. Université Paris Descartes, UMRS 1138, Paris, France. 5Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. Cancer immunoediting explains the dual role by which the immune system can both suppress and/or promote tumor growth. Although cancer immunoediting was first demonstrated using mouse models of cancer, strong evidence that it occurs in human cancers is now accumulating. In particular, the importance of CD8+ T cells in cancer immunoediting has been shown, and more broadly in those tumors with an adaptive immune resistance phenotype. This Review describes the characteristics of the adaptive immune resistance tumor microenvironment and discusses data obtained in mouse and human settings. The role of other immune cells and factors influencing the effector function of tumor-specific CD8+ T cells is covered. We also discuss the temporal occurrence of cancer immunoediting in metastases and whether it differs from immunoediting in the primary tumor of origin. -
CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy
cancers Review CD4+ T Cells: Multitasking Cells in the Duty of Cancer Immunotherapy Jennifer R. Richardson 1 , Anna Schöllhorn 1,2 ,Cécile Gouttefangeas 1,2,3,* and Juliane Schuhmacher 1,2 1 Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; [email protected] (J.R.R.); [email protected] (A.S.); [email protected] (J.S.) 2 Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany 3 German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, 72076 Tübingen, Germany * Correspondence: [email protected] Simple Summary: T cells bearing the co-receptor CD4 on their cell surface are a heterogeneous group of T lymphocytes that exert pro- or anti-inflammatory functions. Evidence from mouse models and cancer patients reveal that various CD4+ T cell subsets play an antagonistic role in the antitumor immune response. This review summarizes current knowledge on CD4+ T cell subsets, on how they impact tumor growth in patients, and which role these cells play in newest cancer immunotherapies. Abstract: Cancer immunotherapy activates the immune system to specifically target malignant cells. Research has often focused on CD8+ cytotoxic T cells, as those have the capacity to eliminate tumor cells after specific recognition upon TCR-MHC class I interaction. However, CD4+ T cells have gained attention in the field, as they are not only essential to promote help to CD8+ T cells, but are also able to kill tumor cells directly (via MHC-class II dependent recognition) or indirectly (e.g., via Citation: Richardson, J.R.; the activation of other immune cells like macrophages). -
Type I Interferons and the Development of Impaired Vascular Function and Repair in Human and Murine Lupus
Type I Interferons and the Development of Impaired Vascular Function and Repair in Human and Murine Lupus by Seth G Thacker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2011 Doctoral Committee: Associate Professor Mariana J. Kaplan, Chair Professor David A. Fox Professor Alisa E. Koch Professor Matthias Kretzler Professor Nicholas W. Lukacs Associate Professor Daniel T. Eitzman © Seth G Thacker 2011 Sharon, this work is dedicated to you. This achievement is as much yours as it is mine. Your support through all six years of this Ph.D. process has been incredible. You put up with my countless miscalculations on when I would finish experiments, and still managed to make me and our kids feel loved and special. Without you this would have no meaning. Sharon, you are the safe harbor in my life. ii Acknowledgments I have been exceptionally fortunate in my time here at the University of Michigan. I have been able to interact with so many supportive people over the years. I would like to express my thanks and admiration for my mentor. Mariana has taught me so much about writing, experimental design and being a successful scientist in general. I could never have made it here without her help. I would also like to thank Mike Denny. He had a hand in the beginning of all of my projects in one way or another, and was always quick and eager to help in whatever way he could. He really made my first year in the lab successful. -
Porvac® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection Against Classical Swine Fever Virus
Article Porvac® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus Yusmel Sordo-Puga 1, Marisela Suárez-Pedroso 1 , Paula Naranjo-Valdéz 2, Danny Pérez-Pérez 1, Elaine Santana-Rodríguez 1, Talia Sardinas-Gonzalez 1, Mary Karla Mendez-Orta 1, Carlos A. Duarte-Cano 1, Mario Pablo Estrada-Garcia 1 and María Pilar Rodríguez-Moltó 1,* 1 Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba; [email protected] (Y.S.-P.); [email protected] (M.S.-P.); [email protected] (D.P.-P.); [email protected] (E.S.-R.); [email protected] (T.S.-G.); [email protected] (M.K.M.O.); [email protected] (C.A.D.); [email protected] (M.P.E.) 2 Central Laboratory Unit for Animal Health (ULCSA), Havana 11400, Cuba; [email protected] * Correspondence: [email protected]; Tel.: +53-7-2504419 Abstract: Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent Citation: Sordo-Puga, Y.; classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In Suárez-Pedroso, M.; Naranjo-Valdéz, order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® P.; Pérez-Pérez, D.; subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged Santana-Rodríguez, E.; 3 intranasally at five, three, and one day post-vaccination with 2 × 10 LD50 of the highly pathogenic Sardinas-Gonzalez, T.; Mendez-Orta, Cuban “Margarita” strain of the classical swine fever virus. -
IFN-Ε Protects Primary Macrophages Against HIV Infection
RESEARCH ARTICLE IFN-ε protects primary macrophages against HIV infection Carley Tasker,1 Selvakumar Subbian,2 Pan Gao,3 Jennifer Couret,1 Carly Levine,2 Saleena Ghanny,1 Patricia Soteropoulos,1 Xilin Zhao,1,2 Nathaniel Landau,4 Wuyuan Lu,3 and Theresa L. Chang1,2 1Department of Microbiology, Biochemistry and Molecular Genetics and 2Public Health Research Institute, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA.3Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA.4Department of Microbiology, New York University School of Medicine, New York, New York, USA. IFN-ε is a unique type I IFN that is not induced by pattern recognition response elements. IFN-ε is constitutively expressed in mucosal tissues, including the female genital mucosa. Although the direct antiviral activity of IFN-ε was thought to be weak compared with IFN-α, IFN-ε controls Chlamydia muridarum and herpes simplex virus 2 in mice, possibly through modulation of immune response. We show here that IFN-ε induces an antiviral state in human macrophages that blocks HIV-1 replication. IFN-ε had little or no protective effect in activated CD4+ T cells or transformed cell lines unless activated CD4+ T cells were infected with replication-competent HIV-1 at a low MOI. The block to HIV infection of macrophages was maximal after 24 hours of treatment and was reversible. IFN-ε acted on early stages of the HIV life cycle, including viral entry, reverse transcription, and nuclear import. The protection did not appear to operate through known type I IFN-induced HIV host restriction factors, such as APOBEC3A and SAMHD1. -
Type I Interferons in Anticancer Immunity
REVIEWS Type I interferons in anticancer immunity Laurence Zitvogel1–4*, Lorenzo Galluzzi1,5–8*, Oliver Kepp5–9, Mark J. Smyth10,11 and Guido Kroemer5–9,12 Abstract | Type I interferons (IFNs) are known for their key role in antiviral immune responses. In this Review, we discuss accumulating evidence indicating that type I IFNs produced by malignant cells or tumour-infiltrating dendritic cells also control the autocrine or paracrine circuits that underlie cancer immunosurveillance. Many conventional chemotherapeutics, targeted anticancer agents, immunological adjuvants and oncolytic 1Gustave Roussy Cancer Campus, F-94800 Villejuif, viruses are only fully efficient in the presence of intact type I IFN signalling. Moreover, the France. intratumoural expression levels of type I IFNs or of IFN-stimulated genes correlate with 2INSERM, U1015, F-94800 Villejuif, France. favourable disease outcome in several cohorts of patients with cancer. Finally, new 3Université Paris Sud/Paris XI, anticancer immunotherapies are being developed that are based on recombinant type I IFNs, Faculté de Médecine, F-94270 Le Kremlin Bicêtre, France. type I IFN-encoding vectors and type I IFN-expressing cells. 4Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, F-94800 Villejuif, France. Type I interferons (IFNs) were first discovered more than Type I IFNs in cancer immunosurveillance 5Equipe 11 labellisée par la half a century ago as the factors underlying viral inter Type I IFNs are known to mediate antineoplastic effects Ligue Nationale contre le ference — that is, the ability of a primary viral infection against several malignancies, which is a clinically rel Cancer, Centre de Recherche 1 des Cordeliers, F-75006 Paris, to render cells resistant to a second distinct virus . -
Type I Interferon Suppresses Tumor Growth Through Activating the STAT3-Granzyme B Pathway in Tumor-Infiltrating Cytotoxic T Lymphocytes Chunwan Lu1,2,3*, John D
Lu et al. Journal for ImmunoTherapy of Cancer (2019) 7:157 https://doi.org/10.1186/s40425-019-0635-8 RESEARCHARTICLE Open Access Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes Chunwan Lu1,2,3*, John D. Klement1,2,3, Mohammed L. Ibrahim1,2,3, Wei Xiao1,2, Priscilla S. Redd1,2,3, Asha Nayak-Kapoor2, Gang Zhou2 and Kebin Liu1,2,3* Abstract Background: Type I interferons (IFN-I) have recently emerged as key regulators of tumor response to chemotherapy and immunotherapy. However, IFN-I function in cytotoxic T lymphocytes (CTLs) in the tumor microenvironment is largely unknown. Methods: Tumor tissues and CTLs of human colorectal cancer patients were analyzed for interferon (alpha and beta) receptor 1 (IFNAR1) expression. IFNAR1 knock out (IFNAR-KO), mixed wild type (WT) and IFNAR1-KO bone marrow chimera mice, and mice with IFNAR1 deficiency only in T cells (IFNAR1-TKO) were used to determine IFN-I function in T cells in tumor suppression. IFN-I target genes in tumor-infiltrating and antigen-specific CTLs were identified and functionally analyzed. Results: IFNAR1 expression level is significantly lower in human colorectal carcinoma tissue than in normal colon tissue. IFNAR1 protein is also significantly lower on CTLs from colorectal cancer patients than those from healthy donors. Although IFNAR1-KO mice exhibited increased susceptibility to methylcholanthrene-induced sarcoma, IFNAR1-sufficient tumors also grow significantly faster in IFNAR1-KO mice and in mice with IFNAR1 deficiency only in T cells (IFNAR1-TKO), suggesting that IFN-I functions in T cells to enhance host cancer immunosurveillance. -
Detecting the Stable Point of Therapeutic Effect of Chronic Myeloid
Xu et al. BMC Bioinformatics 2019, 20(Suppl 7):202 https://doi.org/10.1186/s12859-019-2738-0 RESEARCH Open Access Detecting the stable point of therapeutic effect of chronic myeloid leukemia based on dynamic network biomarkers Junhua Xu1,MinWu1, Shanshan Zhu1,JinzhiLei2 and Jie Gao1* From The 12th International Conference on Computational Systems Biology (ISB 2018) Guiyang, China. 18-21 August 2018 Abstract Background: Most researches of chronic myeloid leukemia (CML) are currently focused on the treatment methods, while there are relatively few researches on the progress of patients’ condition after drug treatment. Traditional biomarkers of disease can only distinguish normal state from disease state, and cannot recognize the pre-stable state after drug treatment. Results: A therapeutic effect recognition strategy based on dynamic network biomarkers (DNB) is provided for CML patients’ gene expression data. With the DNB criteria, the DNB with 250 genes is selected and the therapeutic effect index (TEI) is constructed for the detection of individual disease. The pre-stable state before the disease condition becomes stable is 1 month. Through functional analysis for the DNB, some genes are confirmed as key genes to affect the progress of CML patients’ condition. Conclusions: The results provide a certain theoretical direction and theoretical basis for medical personnel in the treatment of CML patients, and find new therapeutic targets in the future. The biomarkers of CML can help patients to be treated promptly and minimize drug resistance, treatment failure and relapse, which reduce the mortality of CML significantly. Keywords: Chronic myeloid leukemia (CML), Dynamic network biomarkers (DNB), Differentially expressed genes (DEGs), Therapeutic effect index (TEI), Pre-stable state, Treatment time Introduction At present, the use of ABL kinase inhibitors (e.g. -
Chemotherapy Followed by Anti-CD137 Mab Immunotherapy Improves Disease Control in a Mouse Myeloma Model
Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model Camille Guillerey, … , Ludovic Martinet, Mark J. Smyth JCI Insight. 2019;4(14):e125932. https://doi.org/10.1172/jci.insight.125932. Research Article Immunology Immunotherapy holds promise for patients with multiple myeloma (MM), but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than 3 weeks after Vk*MYC tumor cell challenge. The quality of the CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells to MM cells (CD8/MM ratio) accounts for the loss of anti-CD137 mAb efficacy. We established serum M- protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Together, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse. Find the latest version: https://jci.me/125932/pdf RESEARCH ARTICLE Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model Camille Guillerey,1,2,3 Kyohei Nakamura,1 Andrea C. -
Mechanisms of Type-I Ifn Inhibition: Equine Herpesvirus-1 Escape from the Antiviral Effect of Type-1 Interferon Response in Host Cell
University of Kentucky UKnowledge Theses and Dissertations--Veterinary Science Veterinary Science 2019 MECHANISMS OF TYPE-I IFN INHIBITION: EQUINE HERPESVIRUS-1 ESCAPE FROM THE ANTIVIRAL EFFECT OF TYPE-1 INTERFERON RESPONSE IN HOST CELL Fatai S. Oladunni University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-5050-0183 Digital Object Identifier: https://doi.org/10.13023/etd.2019.374 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Oladunni, Fatai S., "MECHANISMS OF TYPE-I IFN INHIBITION: EQUINE HERPESVIRUS-1 ESCAPE FROM THE ANTIVIRAL EFFECT OF TYPE-1 INTERFERON RESPONSE IN HOST CELL" (2019). Theses and Dissertations--Veterinary Science. 43. https://uknowledge.uky.edu/gluck_etds/43 This Doctoral Dissertation is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Veterinary Science by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Antigen-Specific Induced Foxp3 Regulatory T Cells Are Generated
Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade Ivana R. Ferrer, Maylene E. Wagener, Minqing Song, Allan D. Kirk, Christian P. Larsen, and Mandy L. Ford1 Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322 Edited by James P. Allison, Memorial Sloan-Kettering Cancer Center, New York, NY, and approved November 4, 2011 (received for review April 7, 2011) Blockade of the CD40/CD154 pathway potently attenuates T-cell in vivo accumulation of Treg and deletion of graft-specific ef- responses in models of autoimmunity, inflammation, and trans- fectors after CD40/CD154 blockade has not been investigated. plantation. Indeed, CD40 pathway blockade remains one of the To address these questions, we used an ovalbumin (OVA)- most powerful methods of prolonging graft survival in models of expressing transgenic mouse model (20), which allowed us to di- + + transplantation. But despite this effectiveness, the cellular and rectly track both donor-reactive CD4 and CD8 T-cell responses molecular mechanisms underlying the protective effects of CD40 simultaneously over time. Although previous studies have used pathway blockade are incompletely understood. Furthermore, the transgenic models to assess the degree of T-cell deletion after CD154/CD40 blockade (16, 21), none has systematically inter- relative contributions of deletion, anergy, and regulation have not + been measured in a model in which donor-reactive CD4+ and CD8+ rogated the impact of anti-CD154 on the kinetics of both CD4 and CD8+ T-cell deletion and acquisition of effector function. T-cell responses can be assessed simultaneously. To investigate the fi Our results indicated that although CD40/CD154 blockade alone impact of CD40/CD154 pathway blockade on graft-speci c T-cell delayed donor-reactive CD4+ and CD8+ T-cell expansion and responses, a transgenic mouse model was used in which recipients differentiation, the addition of DST was required for antigen- fi + + containing ovalbumin-speci cCD4 and CD8 TCR transgenic T specific T-cell deletion. -
Roles of IFN-Γ in Tumor Progression and Regression: a Review Dragica Jorgovanovic1,2†, Mengjia Song3†, Liping Wang4* and Yi Zhang1,2,4,5*
Jorgovanovic et al. Biomarker Research (2020) 8:49 https://doi.org/10.1186/s40364-020-00228-x REVIEW Open Access Roles of IFN-γ in tumor progression and regression: a review Dragica Jorgovanovic1,2†, Mengjia Song3†, Liping Wang4* and Yi Zhang1,2,4,5* Abstract Background: Interferon-γ (IFN-γ) plays a key role in activation of cellular immunity and subsequently, stimulation of antitumor immune-response. Based on its cytostatic, pro-apoptotic and antiproliferative functions, IFN-γ is considered potentially useful for adjuvant immunotherapy for different types of cancer. Moreover, it IFN-γ may inhibit angiogenesis in tumor tissue, induce regulatory T-cell apoptosis, and/or stimulate the activity of M1 proinflammatory macrophages to overcome tumor progression. However, the current understanding of the roles of IFN-γ in the tumor microenvironment (TME) may be misleading in terms of its clinical application. Main body: Some researchers believe it has anti-tumorigenic properties, while others suggest that it contributes to tumor growth and progression. In our recent work, we have shown that concentration of IFN-γ in the TME determines its function. Further, it was reported that tumors treated with low-dose IFN-γ acquired metastatic properties while those infused with high dose led to tumor regression. Pro-tumorigenic role may be described through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, upregulation of indoleamine 2,3-dioxygenase, and checkpoint inhibitors such as programmed cell death ligand 1. Conclusion: Significant research efforts are required to decipher IFN-γ-dependent pro- and anti-tumorigenic effects. This review discusses the current knowledge concerning the roles of IFN-γ in the TME as a part of the complex immune response to cancer and highlights the importance of identifying IFN-γ responsive patients to improve their sensitivity to immuno-therapies.