Relationships Between Decorin and Biglycan, Structure and Tendon Mechanics Using Mutant Mouse Models

Total Page:16

File Type:pdf, Size:1020Kb

Relationships Between Decorin and Biglycan, Structure and Tendon Mechanics Using Mutant Mouse Models University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2011 Relationships Between Decorin and Biglycan, Structure and Tendon Mechanics Using Mutant Mouse Models LeAnn Dourte University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biomechanics Commons Recommended Citation Dourte, LeAnn, "Relationships Between Decorin and Biglycan, Structure and Tendon Mechanics Using Mutant Mouse Models" (2011). Publicly Accessible Penn Dissertations. 503. https://repository.upenn.edu/edissertations/503 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/503 For more information, please contact [email protected]. Relationships Between Decorin and Biglycan, Structure and Tendon Mechanics Using Mutant Mouse Models Abstract Tendons have a complex mechanical behavior that depends on their composition and structure. Understanding structure-function relationships may elucidate important differences in the functional behaviors of specific tendons and guide targeted treatment modalities and tissue engineered constructs. Specifically, the interactions of small leucine-rich proteoglycans (SLRPs) with collagen fibrils, association with water and role in fibrillogenesis suggest that SLRPs may play an important role in tendon mechanics. Some studies have assessed the role of SLRPs in the mechanical response of tendon, but the relationships between sophisticated mechanics, assembly of collagen and SLRPs have not been well characterized. Therefore, the aim of this study was to evaluate the structure-function relationships between complex tendon mechanics, structure and composition with a focus on decorin and biglycan, two Class I SLRPs. Utilizing homozygous null and heterozygous mutant genotype mouse models, the amount of SLRPs were varied to allow for the study of the "dose" response on tendon mechanics. A statistical model was used to explore the coordinated roles of the measured matrix molecules to better understand the structure-function relationships in tendon and account for compensation often seen in mutant models. In the decorin and biglycan mutant genotype mice, no changes were seen in any elastic tensile or compressive properties compared to wild type. However, viscoelastic mechanical properties were altered in decorin heterozygotes and biglycan nulls and heterozygotes. Compensatory increases in the expression of other SLRPs were noted in the biglycan mutant genotypes. Changes were also found in total collagen content and collagen structure, although collagen characteristics could not completely explain the viscoelastic changes measured. These results suggest that decorin and biglycan play a role in tendon viscoelasticity. Finally, a multiple regression statistical model was used to determine the compositional and structural components that predict mechanical properties. Challenges with this type of model with small tissue size were discussed. Complex interactions between SLRPs and collagen were present in all models and demonstrate the importance of considering the amounts of other components in the tissue when examining structure-function relationships. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Bioengineering First Advisor Louis J. Soslowsky Keywords biglycan, decorin, proteoglycans, SLRP, structure-function, tendon Subject Categories Biomechanics This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/503 RELATIONSHIPS BETWEEN DECORIN AND BIGLYCAN, STRUCTURE AND TENDON MECHANICS USING MUTANT MOUSE MODELS LeAnn M. Dourte A DISSERTATION In Bioengineering Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2011 Supervisor of Dissertation __________________________ Louis J. Soslowsky, PhD, Fairhill Professor, Orthopaedic Surgery Graduate Group Chairperson __________________________ Beth A. Winkelstein, PhD, Professor, Bioengineering Dissertation Committee Susan S. Margulies, PhD (Committee Chair) Professor, Bioengineering, University of Pennsylvania David E. Birk, PhD Professor, Pathology & Cell Biology, University of South Florida Dawn M. Elliott, PhD, Professor, Biomedical Engineering, University of Delaware G. Russell Huffman, MD, MPH Assistant Professor, Orthopaedic Surgery, University of Pennsylvania Acknowledgements I would first like to thank the members of my committee for guiding me through the graduate experience. I would especially like to thank Dr. Louis Soslowsky, my advisor, for his commitment to teaching and mentoring and providing support, knowledge, and insight throughout my time here. I thank Dr. David Birk for his insight and help in the planning, execution and analysis of this work. I also thank Dr. Dawn Elliott, Dr. Susan Marguiles and Dr. Russell Huffman for their valuable comments and suggestions throughout my studies. I’d also like to thank the members of the McKay Orthopaedic Research Laboratory, past and present, who have been fantastic friends, colleagues and mentors. In particular, I thank Dr. J Sarver for providing guidance and support on technical and non- technical topics alike. I thank David Beason for his help in solving computer, equipment and pretty-much-anything-else problems. I am grateful to Dr. Cathryn Peltz for her mentorship and continued support. I also thank Lydia Pathmanathan for her help and persistence and who is responsible for much of this work. I would also like to acknowledge the members of the Birk lab for their enormous help in collecting and analyzing the data in this thesis. Finally, none of this would have been possible without the love and support of my family. I thank my parents, Dale and Joyce, who have always believed in me. I thank my sister, Emily, who is always ready to make me laugh if needed. And finally, I thank Andrew, for his endless hours of support and patience. ii ABSTRACT RELATIONSHIPS BETWEEN DECORIN AND BIGLYCAN, STRUCTURE AND TENDON MECHANICS USING MUTANT MOUSE MODELS LeAnn M. Dourte Louis J. Soslowsky Tendons have a complex mechanical behavior that depends on their composition and structure. Understanding structure-function relationships may elucidate important differences in the functional behaviors of specific tendons and guide targeted treatment modalities and tissue engineered constructs. Specifically, the interactions of small leucine-rich proteoglycans (SLRPs) with collagen fibrils, association with water and role in fibrillogenesis suggest that SLRPs may play an important role in tendon mechanics. Some studies have assessed the role of SLRPs in the mechanical response of tendon, but the relationships between sophisticated mechanics, assembly of collagen and SLRPs have not been well characterized. Therefore, the aim of this study was to evaluate the structure-function relationships between complex tendon mechanics, structure and composition with a focus on decorin and biglycan, two Class I SLRPs. Utilizing homozygous null and heterozygous mutant genotype mouse models, the amount of SLRPs were varied to allow for the study of the “dose” response on tendon mechanics. A statistical model was used to explore the coordinated roles of the measured matrix molecules to better understand the structure-function relationships in tendon and account for compensation often seen in mutant models. In the decorin and biglycan mutant genotype mice, no changes were seen in any elastic tensile or compressive properties iii compared to wild type. However, viscoelastic mechanical properties were altered in decorin heterozygotes and biglycan nulls and heterozygotes. Compensatory increases in the expression of other SLRPs were noted in the biglycan mutant genotypes. Changes were also found in total collagen content and collagen structure, although collagen characteristics could not completely explain the viscoelastic changes measured. These results suggest that decorin and biglycan play a role in tendon viscoelasticity. Finally, a multiple regression statistical model was used to determine the compositional and structural components that predict mechanical properties. Challenges with this type of model with small tissue size were discussed. Complex interactions between SLRPs and collagen were present in all models and demonstrate the importance of considering the amounts of other components in the tissue when examining structure-function relationships. iv Table of Contents Acknowledgements ............................................................................................................. ii ABSTRACT ....................................................................................................................... iii Table of Contents ................................................................................................................ v List of Figures .................................................................................................................... xi Chapter 1. Introduction ....................................................................................................... 1 A. Introduction ............................................................................................................... 1 B. Background ............................................................................................................... 3 B1. Tendon Structure and Composition ...................................................................
Recommended publications
  • And MMP-Mediated Cell–Matrix Interactions in the Tumor Microenvironment
    International Journal of Molecular Sciences Review Hold on or Cut? Integrin- and MMP-Mediated Cell–Matrix Interactions in the Tumor Microenvironment Stephan Niland and Johannes A. Eble * Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; [email protected] * Correspondence: [email protected] Abstract: The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs. Keywords: tumor microenvironment; extracellular matrix; integrins; matrix metalloproteinases; matrikines Citation: Niland, S.; Eble, J.A. Hold on or Cut? Integrin- and MMP-Mediated Cell–Matrix 1. Introduction Interactions in the Tumor Microenvironment.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Dietary Protein Restriction Rapidly Reduces Transforming Growth Factor
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9765-9769, November 1991 Medical Sciences Dietary protein restriction rapidly reduces transforming growth factor p1 expression in experimental glomerulonephritis (extraceliular matrix/transforming growth factor 8/glomerulonephritis) SEIYA OKUDA*, TAKAMICHI NAKAMURA*, TATSUO YAMAMOTO*, ERKKI RUOSLAHTIt, AND WAYNE A. BORDER*t *Division of Nephrology, University of Utah School of Medicine, Salt Lake City, UT 84132; and tCancer Research Center, La Jolla Cancer Research Foundation, La Jolla, CA 92037 Communicated by Eugene Roberts, August 19, 1991 (receivedfor review April 29, 1991) ABSTRACT Dietary protein restriction has been shown to TGF-/31 on both cell types is to regulate the synthesis of two slow the rate of loss of kidney function in humans with chondroitin/dermatan sulfate proteoglycans, biglycan and progressive glomerulosclerosis due to glomerulonephritis or decorin, both of which can bind TGF-P1 (23). In an experi- diabetes mellitus. A central feature of glomerulosclerosis is the mental model ofglomerulonephritis in the rat, we have found pathological accumulation of extracellular matrix within the a close association between elevated expression of the diseased glomeruli. Transforming growth factor j1 (TGF-.81) TGF-131 gene and the development of glomerulonephritis is known to have widespread regulatory effects on extracellular (10). Seven days after glomerular injury, at the time of matrix and has been implicated as a major cause of increased significant extracellular matrix accumulation, the glomeruli extracellular matrix synthesis and buildup of pathological showed a 5-fold increase in TGF-f31 mRNA and a nearly matrix within glomeruli in experimental glomerulonephritis. 50-fold increase in production ofbiglycan and decorin.
    [Show full text]
  • Fibromodulin: Structure, Physiological Functions, and an Emphasis on Its Potential Clinical Applications in Various Diseases Mohammad M
    SYSTEMATIC REVIEW ARTICLE Fibromodulin: Structure, Physiological Functions, and an Emphasis on its Potential Clinical Applications in Various Diseases Mohammad M. Al-Qattan and Ahmed M. Al-Qattan ABSTRACT Fibromodulin (FMOD) is one of the small leucine-rich proteoglycans. A search of the literature did not reveal any paper that specifically reviews the potential clinical applications of FMOD in the management of human diseases. First, the structure and physiological functions of FMOD were reviewed. Then its potential clinical applications in various diseases including diseases of the skin, tendons, joints, intervertebral discs, blood vessels, teeth, uterus, bone and kidney were reviewed. FMOD is able to switch the adult response to skin wounding to the desired fetal response of scarless healing. Lowered levels of FMOD would be desirable in the management of tendinopathy, uterine fibroids, tumors resistant to radiotherapy, glioblastomas, small-cell lung cancer, and primary liver/lung fibrosis. In contrast, increased levels of FMOD would be desirable in the management of acute tendon injuries, osteoarthritis, rheumatoid arthritis, temporo-mandibular disease, joint laxity, intervertebral disc disease, neo-intimal hyperplasia of vein grafts, teeth caries, periodontal disease, endometrial atrophy, osteoporosis and diabetic nephropathy. Furthermore, FMOD may be used as a prognostic marker of cerebrovascular events in patients undergoing carotid endarterectomy and a marker for prostatic cancer. Finally, the use of FMOD in the treatment of symptomatic endometrial atrophy should be explored in women who are unable to use the standard estrogen management for endometrial atrophy. The review concluded that clinical trials in humans should be initiated to investigate the potential therapeutic effects of FMOD.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Figure S1. Bioinformatics evaluation of dystrophin isoform Dp427 and its central position in the molecular pathogenesis of X-linked muscular dystrophy. In order to generate a protein interaction map with known and predicted protein associations that include direct physical and indirect functional protein linkages, the bioinformatics STRING database [1,2] was used to analyse mass spectrometrically-identified proteins with a changed abundance in mdx-4cv skeletal muscles (Tables 1 and 2). S2 Figure S2. Focus of the bioinformatics evaluation of dystrophin isoform Dp427 and its central position in the molecular pathogenesis of X-linked muscular dystrophy. Shown is the middle part of the interaction map of altered muscle-associated proteins from mdx-4cv hind limb muscles, focusing on the central position of the dystrophin protein Dp427 (marked in yellow). In order to generate a protein interaction map with known and predicted protein associations that include direct physical and indirect functional protein linkages, the bioinformatics STRING database [1,2] was used to analyse mass spectrometrically-identified proteins with a changed abundance in mdx-4cv skeletal muscles (Tables 1 and 2). S3 Table S1. List of identified proteins that exhibit a significantly altered concentration in crude mdx-4cv hind limb muscle preparations as revealed by label-free LC-MS/MS analysis. This table contains the statistical q-values of the proteins listed in Tables 1 and 2. Accession Peptide Max Fold Highest Mean Description q Value Number
    [Show full text]
  • Identification of Novel FNIN2 and FNIN3 Fibronectin-Derived
    International Journal of Molecular Sciences Article Identification of Novel FNIN2 and FNIN3 Fibronectin-Derived Peptides That Promote Cell Adhesion, Proliferation and Differentiation in Primary Cells and Stem Cells Eun-Ju Lee 1,2,† , Khurshid Ahmad 1,2,† , Shiva Pathak 3, SunJu Lee 1, Mohammad Hassan Baig 1 , Jee-Heon Jeong 3 , Kyung-Oh Doh 4, Dong-Mok Lee 5 and Inho Choi 1,2,* 1 Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; [email protected] (E.-J.L.); [email protected] (K.A.); [email protected] (S.L.); [email protected] (M.H.B.) 2 Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea 3 College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; [email protected] (S.P.); [email protected] (J.-H.J.) 4 Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Korea; [email protected] 5 Technology Convergence R&D Group, Korea Institute of Industrial Technology, Yeongcheon 770200, Korea; [email protected] * Correspondence: [email protected]; Fax: +82-53-810-4769 † These authors contributed equally to this work. Abstract: In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, Citation: Lee, E.-J.; Ahmad, K.; we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide Pathak, S.; Lee, S.; Baig, M.H.; Jeong, (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentia- J.-H.; Doh, K.-O.; Lee, D.-M.; Choi, I.
    [Show full text]
  • Biglycan Expression and Its Function in Human Ligamentum Flavum
    www.nature.com/scientificreports OPEN Biglycan expression and its function in human ligamentum favum Hamidullah Salimi, Akinobu Suzuki*, Hasibullah Habibi, Kumi Orita, Yusuke Hori, Akito Yabu, Hidetomi Terai, Koji Tamai & Hiroaki Nakamura Hypertrophy of the ligamentum favum (LF) is a major cause of lumbar spinal stenosis (LSS), and the pathology involves disruption of elastic fbers, fbrosis with increased cellularity and collagens, and/or calcifcation. Previous studies have implicated the increased expression of the proteoglycan family in hypertrophied LF. Furthermore, the gene expression profle in a rabbit experimental model of LF hypertrophy revealed that biglycan (BGN) is upregulated in hypertrophied LF by mechanical stress. However, the expression and function of BGN in human LF has not been well elucidated. To investigate the involvement of BGN in the pathomechanism of human ligamentum hypertrophy, frst we confrmed increased expression of BGN by immunohistochemistry in the extracellular matrix of hypertrophied LF of LSS patients compared to LF without hypertrophy. Experiments using primary cell cultures revealed that BGN promoted cell proliferation. Furthermore, BGN induces changes in cell morphology and promotes myofbroblastic diferentiation and cell migration. These efects are observed for both cells from hypertrophied and non-hypertrophied LF. The present study revealed hyper-expression of BGN in hypertrophied LF and function of increased proteoglycan in LF cells. BGN may play a crucial role in the pathophysiology of LF hypertrophy through cell proliferation, myofbroblastic diferentiation, and cell migration. Lumbar spinal stenosis (LSS) is the most common spinal disorder among the elderly population. Hypertrophic changes in the ligamentum favum (LF) are one of the major factors of LSS.
    [Show full text]
  • Recombinant Fibromodulin and Decorin Effects on NF-Κb and Tgfβ1 in the 4T1 Breast Cancer Cell Line
    ONCOLOGY LETTERS 13: 4475-4480, 2017 Recombinant fibromodulin and decorin effects on NF-κB and TGFβ1 in the 4T1 breast cancer cell line LADAN DAWOODY NEJAD1,2, ALIREZA BIGLARI3, TIZIANA ANNESE4 and DOMENICO RIBATTI4,5 1Department of Molecular Medicine and Biochemistry Institute, University of Bern, 3012 Bern, Switzerland; Departments of 2Molecular Medicine and Genetics and 3Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, 45154 Zanjan, Iran; 4Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, I-70124 Bari; 5National Cancer Institute Giovanni Paolo II, I-70126 Bari, Italy Received October 18, 2016; Accepted February 3, 2017 DOI: 10.3892/ol.2017.5960 Abstract. Constitutive activation of nuclear factor-κB NF-κB activity stimulating signals cause dissociation of IκB, (NF-κB) stimulates cell proliferation and metastasis, and allowing NF-κB dimers to locate to the nucleus and alter inhibits apoptosis in breast cancer. Transforming growth gene expression (6). Additionally, NF-κB signaling is essen- factor-β (TGF-β) signaling pathway is deregulated in breast tial for epithelial-mesenchymal transition (EMT), and the cancer progression and metastasis. The aim of the present therapeutic inhibition of NF-κB may be an effective strategy study was to investigate the inhibitory effects of the two small to control tumor invasion and metastasis (7). leucine rich proteoglycans fibromodulin (Fmod) and decorin Transforming growth factor β (TGF-β) is a pleiotropic (Dcn), overexpressed using adenovirus gene transfer, on cytokine that is found in three isoforms (TGF-β1, TGF-β2 NF-κB-activity and TGF-β1-expression in the highly meta- and TGF-β3), which are structurally and functionally static 4T1 breast cancer cell line.
    [Show full text]
  • Biglycan Recruits Utrophin to the Sarcolemma and Counters Dystrophic Pathology in Mdx Mice
    Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice Alison R. Amentaa, Atilgan Yilmazb, Sasha Bogdanovichc, Beth A. McKechniea, Mehrdad Abedid, Tejvir S. Khuranac, and Justin R. Fallona,1 aDepartment of Neuroscience and bDepartment of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912; cDepartment of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and dDivision of Hematology and Oncology, University of California–Davis Medical Center, Sacramento, CA 95817 Edited by Louis M. Kunkel, Children’s Hospital Boston, Boston, MA, and approved November 22, 2010 (received for review September 2, 2010) Duchenne muscular dystrophy (DMD) is caused by mutations in dys- associated utrophin in cultured myotubes. Importantly, rhBGN trophin and the subsequent disruption of the dystrophin-associated can be delivered systemically to dystrophin-deficient mdx mice, protein complex (DAPC). Utrophin is a dystrophin homolog ex- where it up-regulates utrophin and other DAPC components at pressed at high levels in developing muscle that is an attractive the sarcolemma, ameliorates muscle pathology, and improves target for DMD therapy. Here we show that the extracellular matrix function. Several lines of evidence indicate that biglycan acts by protein biglycan regulates utrophin expression in immature muscle recruiting utrophin to the plasma membrane. We propose rhBGN and that recombinant human biglycan (rhBGN) increases utrophin as a candidate therapeutic for DMD. expression in cultured myotubes. Systemically delivered rhBGN up- regulates utrophin at the sarcolemma and reduces muscle pathology Results in the mdx mouse model of DMD. RhBGN treatment also improves Endogenous Biglycan Regulates Utrophin Expression in Immature muscle function as judged by reduced susceptibility to eccentric Muscle.
    [Show full text]
  • Collagen-Binding Proteoglycan Fibromodulin Can Determine Stroma Matrix Structure and Fluid Balance in Experimental Carcinoma
    Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma Åke Oldberg*, Sebastian Kalamajski*, Alexei V. Salnikov†‡§, Linda Stuhr¶, Matthias Mo¨ rgelinʈ, Rolf K. Reed¶, Nils-Erik Heldin**, and Kristofer Rubin†,†† *Department of Experimental Medical Sciences, BMC, B-12, and ʈDepartment of Clinical Sciences, BMC B14, University of Lund, SE-221 84 Lund, Sweden; †Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; ‡Oncology Clinic, University Hospital Lund, SE-221 85 Lund, Sweden; ¶Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway and **Department of Genetics and Pathology, Uppsala University Hospital, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden Edited by Erkki Ruoslahti, Burnham Institute for Medical Research, Santa Barbara, CA, and approved July 16, 2007 (received for review March 7, 2007) Research on the biology of the tumor stroma has the potential to Clara, CA) of Fc:T␤RII-treated KAT-4 carcinomas revealed lead to development of more effective treatment regimes enhanc- down-regulations predominantly of macrophage-related genes ing the efficacy of drug-based treatment of solid malignancies. (17). Furthermore, inhibition of IL-1 reduces IFP in these Tumor stroma is characterized by distorted blood vessels and carcinomas (17). These findings indicate a role of inflammation activated connective tissue cells producing a collagen-rich matrix, in the generation of an elevated IFP. Tortuous and leaky blood which is accompanied by elevated interstitial fluid pressure (IFP), vessels, and absence of lymph drainage in tumors have also been indicating a transport barrier between tumor tissue and blood.
    [Show full text]
  • The Expression of Cell Surface Heparan Sulfate Proteoglycans and Their Roles in Turkey Skeletal Muscle Formation
    THE EXPRESSION OF CELL SURFACE HEPARAN SULFATE PROTEOGLYCANS AND THEIR ROLES IN TURKEY SKELETAL MUSCLE FORMATION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaosong Liu, M.S. ***** The Ohio State University 2003 Dissertation Committee: Approved by Dr. Sandra G. Velleman, Advisor Dr. Karl E. Nestor Dr. Joy L. Pate _______________________ Advisor Dr. Wayne L. Bacon Department of Animal Sciences ABSTRACT Skeletal muscle myogenesis is a series of highly organized processes including cell migration, adhesion, proliferation, and differentiation that are precisely regulated by the extrinsic environment of muscle cells. Fibroblast growth factor 2 (FGF2) is one of the key growth factors involved in the regulation of skeletal muscle myogenesis. Since FGF2 is a potent stimulator of skeletal muscle cell proliferation but an intense inhibitor of cell differentiation, changes in FGF2 signaling to muscle cells will influence cell behavior and result in differences in cell proliferation and differentiation. As the cell surface heparan sulfate proteoglycans (HSPG), syndecans and glypicans, are the low- affinity receptors of FGF2 and function to regulate the binding of FGF2 to the high- affinity fibroblast growth factor receptors (FGFR) and affect the activity of FGF2, differences in the expression of these molecules may cause alterations in cell responsiveness to FGF2 stimulation, which can lead to changes in skeletal muscle development and growth. However, the precise functional differences of syndecans and glypicans in FGF2 signaling are unknown to date. Our hypothesis is that syndecans and glypicans may play different roles in regulating the FGF2-FGFR interaction, and the relative expression of these molecules is critical for determining the cell status in proliferation and differentiation.
    [Show full text]
  • Decorin and Biglycan Expression and Distribution During
    DECORIN AND BIGLYCAN EXPRESSION AND DISTRIBUTION DURING PALATAL SHELF ADHESION A Thesis by ISRA M. IBRAHIM Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Kathy Svoboda Committee Members, Louis-Bruno Ruest Xiaofang Wang Head of Department, Paul Dechow May 2015 Major Subject: Oral Biology Copyright 2015 Isra M. Ibrahim ABSTRACT Understanding the molecular events in palate development is a prerequisite to more effective treatments of cleft palate. The secondary palate in humans and mice forms from shelves of mesenchyme covered with medial edge epithelium (MEE). These shelves adhere to form the midline epithelial seam (MES). MES cells then proceed through epithelial to mesenchymal transition (EMT) and/or apoptosis to yield a fused palate. Adhesion of opposing MEE is a crucial event whose alteration causes cleft palate. Previous studies showed that chondroitin sulphate proteoglycans (CSPG) on the apical surfaces of MEE was an important factor in palatal shelf adhesion. In this study we investigated decorin and biglycan, being expressed in numerous craniofacial tissues, as potential proteoglycans involved in palatal shelf adhesion. We used a laser capture microdissection (LCM) technique to collect MEE cells and real-time polymerase chain reaction, to determine mRNA levels of decorin and biglycan that correctly reflect changes in gene expression during various stages of palatal shelf fusion (Embryonic days 13.5, 14.0 and 14.5). Both decorin and biglycan were expressed on the apical surface as well as between the MEE cells. We found that biglycan protein and mRNA levels peaked as the palatal shelves adhered.
    [Show full text]