Genotypic and Environmental Contributions to Baked Potato Flavor

Total Page:16

File Type:pdf, Size:1020Kb

Genotypic and Environmental Contributions to Baked Potato Flavor Am. J. Pot Res (2008) 85:455–465 DOI 10.1007/s12230-008-9053-z Genotypic and Environmental Contributions to Baked Potato Flavor Shelley H. Jansky Published online: 24 September 2008 # Potato Association of America 2008 Abstract This study was carried out to determine the relative clones de especialidad. Los atributos de sabor incluyeron contributions of genotype and environment to baked potato calidad de harinoso, dulzura, intensidad de sabor, desabrido flavor variation in standard potato cultivars. In addition, y percepción general de sabor. Se encontraron diferencias relationships between individual flavor components and entre cultivares y ambientes de producción. Las papas overall quality perception scores were determined. The study almacenadas recibieron mayor puntaje en percepción de was carried out for 2 years using stored potatoes. In addition, calidad que las papas frescas. La condición de harinoso fue fresh potato tubers were evaluated in the second year. Taste el atributo del sabor más variable y fue influenciado por el panels evaluated potato varieties within four market classes, genotipo y el medio ambiente. La dulzura e intensidad de russets, whites, reds, and specialty clones. Flavor attributes sabor fueron asociadas positivamente con la percepción de included mealiness, sweetness, flavor intensity, off-flavor, and calidad. Se detectó también una fuerte asociación negativa overall quality perception. Differences among cultivars and entre la falta de sabor y la percepción de calidad. production environments were found. Stored potatoes re- ceived higher quality perception scores than fresh potatoes. Keywords Potato . Solanum tuberosum . Sensory analysis . Mealiness was the most variable flavor attribute and was Baked potato . Sensory panel influenced by both genotype and environment. Sweetness and flavor intensity were positively associated with quality perception. A strong negative association between off-flavor Introduction and quality perception was also detected. Per capita consumption of potatoes in the USA is higher Resumen Este estudio se realizó para determinar la than that of any other vegetable. In 2005, Americans ate contribución relativa del genotipo y el medio ambiente a 61 kg of potatoes per person, of which 21 kg (34%) were la variación del sabor de la papa horneada en cultivares purchased fresh (Economic Research Service, US Depart- estándar de papa. Además se determinó la relación entre los ment of Agriculture). Tomatoes ranked a distant second, componentes individuales del sabor y el puntaje de la with 41 kg consumed per year, of which 8 kg (19%) were percepción de la calidad general. El estudio se realizó por purchased fresh. The most popular way to prepare fresh dos años usando papas almacenadas. Además, tubérculos potatoes is by baking them (Lin and Yen 2004). While frescos de papa fueron evaluados en el segundo año. Los overall per capita consumption of potatoes is expected to paneles sensoriales evaluaron las variedades de papa dentro decrease in the future, the consumption of baked potatoes is de cuatro clases comerciales, rugosas, blancas, rojas y expected to increase. In fact, the largest growth of all potato products among adults is expected to occur for baked S. H. Jansky (*) potatoes (Lin and Yen 2004). Department of Horticulture, Potato breeding programs typically focus on yield, tuber USDA-ARS and University of Wisconsin-Madison, appearance, processing quality, and disease resistance as 1575 Linden Drive, Madison, WI 53706, USA selectable traits (Bradshaw and MacKay 1994; Ross 1986; e-mail: [email protected] Tarn et al. 1992). Flavor, on the other hand, is not an 456 Am. J. Pot Res (2008) 85:455–465 important selection criterion during cultivar development. quality decreases due to the production of organic acids Currently, most breeding programs only require the absence (Cieslik 1997). Levels of methional, an aroma compound, of off-flavor. In recent years, breeders and growers have vary across environments (Duckham et al. 2002; Oruna- expressed a desire to assess cultivar flavor and use this Concha et al. 2001). Because methionine contains sulfur, information in breeding programs to improve the market sulfur application rates may account for some differences in value of potatoes. methional levels (Duckham et al. 2002). Methoxypyrazines Components of flavor include taste, aroma, texture, and may be produced by the tuber or by soil bacteria umami (a Japanese word meaning delicious). The major (Pseudomonas taetrolens) and then absorbed by the tuber, taste (nonvolatile) components in potato tubers are glyco- so soil microbe populations may influence flavor (Buttery alkaloids, sugars, amino acids, lipids, acids, and nucleotides et al. 1973). In addition, high potassium levels in tubers (Maga 1994). Glycoalkaloids can produce a bitter flavor may enhance umami taste intensity (Ugawa and Kurihara when greater than 14 mg/100 g tuber fresh weight (Sinden 1994). Differences in production environment were found et al. 1976). The main contributions of sugars, amino acids, to influence the development of off-flavor in pre-cooked and lipids are the volatile compounds they produce after vacuum-packed potatoes, but specific environmental heating. However, sugars also contribute directly to sweet parameters influencing off-flavor were not determined taste. Phenolic compounds such as chlorogenic acid may (Jensen et al. 1999). contribute negatively to flavor, as a positive correlation Some studies have evaluated the effects of organic between phenolic content and bitterness/astringency has versus conventional production systems on sensory attrib- been reported (Mondy et al. 1971). However, Sinden et al. utes. Using triangle tests, Wszelaki et al. (2005) found that (1976) did not find a strong relationship between phenolic taste panelists were able to distinguish between conven- content and bitterness. Ribonucleotides act as precursors for tionally and organically grown boiled red potatoes if the umami compounds (flavor potentiators). Steamed or boiled skin was left on the tubers while boiling. If the skin was tubers with high levels of guanosine 5′-monophosphate removed during boiling, then differences could not be (GMP) had high quality perception scores in sensory detected. Hajslova et al. (2005) determined that cultivar and analyses (Morris et al. 2007). A positive synergistic effect production year are important influences on sensory quality on flavor occurs when 5′ ribonucleotides interact with of boiled potatoes, but that there is no clear influence of amino acids, especially glutamate. production system (organic versus conventional). In a Baked potatoes produce a complex array of volatile review of studies conducted to evaluate organoleptic quality compounds including lipids, Maillard reaction products, sulfur in organic versus conventional systems, no clear statements compounds, and methoxypyrazines (Oruna-Concha et al. could be made regarding the superiority of one type over 2001). Pyrazines are considered to be among the most the other (Woese et al. 1997). important and characteristic components of baked potato Sensory quality changes during the storage of potato flavor (Oruna-Concha et al. 2001). They are produced by the tubers. In 1981, True and Work (1981) noted that ‘Russet Maillard reaction, in which reducing sugars (glucose and Burbank’ ranked high and ‘Ontario’ ranked low for flavor fructose) interact with amino acids at high temperature. A preference in fresh baked potatoes, but differences were not strong positive relationship between pyrazine levels and baked detected in tubers stored at 8.2°C for 6 months. In a study potato flavor has been reported (Maga and Holm 1992). of pre-peeled boiled potatoes, cultivar and storage time (0, Potato texture is a complex trait, but much variation can 1.5, and 6 months at 4°C) were the primary factors be explained by determining the degree of a tuber’s explaining (68%) variability in taste, color, and texture mealiness or, at the opposite end of the spectrum, waxiness (Thybo et al. 2006). When potato tubers are cooked, fatty (van Marle et al. 1997). A mealy potato is dry and granular, acids degrade to produce aldehydes and ketones, which while a waxy potato is moist and gummy. Texture is contribute to flavor (Duckham et al. 2002). Total levels of influenced, at least in part, by characteristics of starch fatty acids and their flavor products increase during storage grains and cell walls (Martens and Thybo 2000; McComber (Duckham et al. 2002). It is interesting to note that, as et al. 1994; van Marle et al. 1997). Mealiness has been tubers acclimate to cold storage temperatures, their fatty found to be associated with high dry matter content (van acid profiles change. Consequently, both levels and types of Dijk et al. 2002). However, dry matter content does not fatty acids change during storage. There is variation among always explain mealiness. In one sensory analysis study, cultivars in the way their fatty acid profiles are altered ‘Ontario’ was judged to be less mealy than other cultivars during cold storage (Mondy et al. 1963). The types and in the trial, but its total solids content was similar to some levels of other volatile components of flavor also change of those cultivars (True and Work 1981). during storage, presumably due to alterations in enzyme There is evidence that production environment affects activities and levels of flavor precursors, such as sugars sensory quality. As tuber nitrogen levels increase, sensory (Duckham et al. 2002). Levels of glucose and fructose in Am. J. Pot Res (2008) 85:455–465 457 most cultivars increase during storage at less than 10°C testing began, the methods for testing human beings in this (Sowokinos 2001). study were determined to be exempt from review by Potato growers and breeders are interested in considering Institutional Review Board of the Graduate School at the flavor as a marketable trait. In order to breed for improved University of Wisconsin-Madison. A trained taste panel of flavor, the relative contributions of cultivar, production 16 to 20 members evaluated the flavor of tubers baked at environment, and storage environment must be understood. 200°C for 1 h from March 6 to 9, 2006.
Recommended publications
  • US20200383331A1.Pdf
    US 20200383331A1 IN (19United States ( 12 ) Patent Application Publication ( Pub. No.:USQO2Q/QZ8333l Al HEINRICHER ( 43 ) Pub . Date : Dec. 10 , 2020 ( 54 ) COMPOSITIONS AND METHODS FOR AOIN 43/40 ( WQOQI LARGE - SCALE IN VITRO PLANT AOIN 43/08 ( 2006.01 ) BIOCULTURE A01N 37/52 ( 2006.01 ) AOIN 4730 ( 2006.01 ) ( II ) Applicant: BQOSHIQOQT LLC , Hailey, IDUS A016 22/15 ( WQGOI ( 52 ) U.S. CI . ( 72 ) Inventor: Jackie HEINRICHER , Anacortes , WA CPC AOIN 43/90 ( 2013.01 ) ; AO1G 31/00 (US ) ( 2013.01 ) ; A01N 59/08 ( 2013.01 ) ; A01N 59/20 ( 2013.01 ) ; A01N 59/16 ( 2013.01 ) ; ( 21 ) Appl . No .: 16 /728,478 A01N 59/14 ( 2013.01 ) ; A01N 31/06 ( 2013.01 ) ; A01N 43/78 ( 2013.01 ) ; A01N ( 22 ) Filed : Dec. 27 , 2019 37/10 ( 2013.01 ) ; A01N 43/82 ( 2013.01 ) ; AOIN 59/12 ( 2013.01 ) ; AOIN 37/44 Related U.S. Application Data ( 2013.01 ) ; A01N 43/40 ( 2013.01 ) ; A01N ( 63 ) Continuation of application No. PCT /US2018 / 43/08 ( 2013.01 ) ; A01N 37/52 ( 2013.01 ) ; 040637 , filed on Jul. 2 , 2018 , Continuation of appli AOIN 47/30 ( 2013.01 ) ; A01G 22/15 cation No. PCT/ US2018 / 040646 , filed on Jul. 2 , ( 2018.02 ) ; A01N 59/00 ( 2013.01 ) 2018 . ( 60 ) Provisional application No. 62 / 527,946 , filed on Jun . ( 57 ) ABSTRACT 3Q , provisional application No. 62 /6II , & a , The present invention provides media , kits , systems , and filed on Dec. 29 , 2017 , provisional application No. methods for achieving large scale pistachio production 62 / 527,862 , filed on Jun . 30 , 2017 . within a short time via bioculture , large scale yam produc tion within a short time via bioculture, high multiplication Publication Classification rate of plants including cannabis via in vitro micropropaga ( 51 ) Int .
    [Show full text]
  • 2018 Potato Postharvest Processing Evaluation Report
    Postharvest Processing Evaluation of Alaska Grown Potatoes A Specialty Crop Block Grant Project Introduction Potatoes have long been a staple produce of Alaskan agriculture. Between the years 2009-2016 Alaska growers have produced between 130,000 to 155,000 cwt annually amounting to over 2 million dollars in sales each year (2017 Alaska Annual Bulletin). There has been increasing interest in the use of Alaska Grown potatoes for processing in the local chipping and restaurant market, but this effort hasn’t been supported with data on the processing quality of our locally produced potatoes. To better meet the needs of the food service industries and to promote a growing market for producers, the Alaska Plant Materials Center (PMC) undertook a postharvest evaluation on our collection of potato varieties grown on site in Palmer, Alaska. The results of this research present timely and relevant data to Alaskan growers, processors and consumers. On a national level, the processing industry accounts for nearly 60% of potatoes produced annually. This trend has caused potato breeders to select for processing qualities, and quite a few processing cultivars have been recently registered and released for use. Although some of these newer varieties are grown here in Alaska, they have not been evaluated and compared to the data collected by growers in other regions or compared to established varieties that are known to do well here. Even if the physical qualities of the varieties were comparable to those grown elsewhere, Alaska is unlikely to compete in the national processing market because of our distance from any commercial processing facility and the small “family farm” scale of operation.
    [Show full text]
  • Seed Potatoes You Would Like to Request from the Plant Materials Center (PMC) to Plant on Your Farm in 2020
    5310 S. Bodenburg Spur Palmer, Alaska 99645-7646 Main: 907.745.4469 Fax: 907.746-1568 November 29, 2018 Dear Grower, Please consider the varieties and quantities of generation zero (G0) seed potatoes you would like to request from the Plant Materials Center (PMC) to plant on your farm in 2020. In order to establish our greenhouse production plans for 2019 at the PMC, we will accept order requests through January 31, 2019. We encourage you to renew your seed stocks as often as possible with disease free seed from the PMC to maintain high quality seed in Alaska potato production. In this regard, we are here to serve you and provide the industry with a healthy start. Review the attached list or visit http://plants.alaska.gov/PotatoSeedProduction.html for ordering information. If you do not see a variety on the list that interests you, please contact us to see if we can produce the variety or recommend a similar one. Based on production logistics, we are setting a minimum order limit of two pounds per variety. The price is $15.00 per pound. Orders will not be accepted from growers with a delinquent account. Please ensure that past balances are paid before ordering new material. Feel free to contact the PMC office at (907) 745-4469 to verify your account status if necessary. Thank you for your understanding in this matter. Please do not hesitate to contact me with any questions. Sincerely, Christine Macknicki Potato Program Technician (907) 745-8021 [email protected] Available Public Varieties AC Red Island Catriona Katahdin Red
    [Show full text]
  • 2021 Alaska Certified Seed Potato Varieties
    2021 Alaska Certified Seed Potato Varieties Variety Name Possible Other Names Potato Skin Color Potato Flesh Color Cooking/Eating Information Flower Description Yield Information Disease/Pest Information Adirondack Dark Blue (2) Dark Purple (2) Good roasted, steamed, and Petals are mainly Produces higher Can be susceptible to Blue in salads. Can be chipped, but white with some blue- yields than most common scab, silver scurf, not after being in cold storage. purple pigmentation. blue varieties. (1) and Colorado potato beetle. (1) (1) (1) Alaska AK Frostless Whitish/Yellowish White (3) Excellent flavor. (3) Good for Blue violet petals (3) Medium to high Somewhat resistant to Frostless (3) baking, chipping, and making yield potential. (3) common scab. Susceptible into french fries. Not good for to late blight, wart, and chipping after cold storage. (8) golden nematode. (3) Alaska Mountain Blush* Alaska Red AK Redeye Red (2) White (2) Good texture and flavor. Good Dark lilac petals. (9) High yielding. (9) Some susceptibility to scab. for boiling and baking, but not Susceptibility/resistance to good for chipping. (9) other diseases or pests is unknown. (9) Alby's Gold Yellow (2) Yellow (2) Texture is starchy. (2) Allegany Buff (10) Whitish-Yellowish Good for making french fries Light purple petals. High yielding. (10) Resistant to golden (10) and chipping, even after Yellow anthers. (10) nematode, early blight, and tubers are placed in cold verticillium wilt; some storage. Has good taste and resistance to pitted scab and texture after boiling and late blight. (10) baking. (11) Allagash Allagash Whitish/Yellowish White (3) Good Taste.
    [Show full text]
  • Potatoes in the Home Garden
    for the Gardener Growing Potatoes in the Home Garden f you could cultivate a vegetable crop that could be grown in almost every climate (except hot tropical zones) from sea level to 15,000 feet, could be eaten for breakfast, lunch, dinner, and snacks, prepared in a myriad of ways, be easily kept Iwithout processing or refrigeration for up to 6-8 months, produced high yields (2-5 pounds per square foot) and was extremely nutritious (high in protein, vitamin C, niacin, B vitamins, iron and energy) but low in calories (sans butter and sour cream), you would wouldn’t you? If you did you would be in the minority of home gardeners. Most gardeners eschew the illustrious “spud” (Solanum tuberosum), thinking it doesn’t warrant space in the small garden and that home grown potatoes don’t taste much better than their store-bought counterparts. Not true! Wrong on both counts. Solanum tuberosum (the Andean potato) originated in the highlands of the Andes mountain ranges of South America (Peru, Columbia, Ecuador, Bolivia) at elevations up to 15,000 feet. Potatoes have been in cultivation for more than 2000 years and there are more than 2,000-3,000 Beveridge Melisa varieties extant today. It is an herbaceous perennial in its native habitat, but treated as a tender annual in the temperate zones and damaged by frost at 28-30°F. The plant’s only edible portions are the tubers produced underground, apically (at the tip) on stolons (horizontal underground stems; see drawing at right). While potatoes produce viable seed, the genetic makeup of sexually- produced plants is so diverse and variable (heterozygous) that production from this seed is negligible.
    [Show full text]
  • Potato - Wikipedia, the Free Encyclopedia
    Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area
    [Show full text]
  • Seed Potato Directory 2017
    The farm operation grows 93 acres of field generations one and two seed, operates 4 greenhouses producing conventional and NFT minitubers. Our stewardship of this seed continues through WISCONSIN the certification Our of stewardship these seed oflots this on seed Wisconsin continues seed through grower t farms, there is no other program like it. CERTIFIED The program maintains variety trueness to type; selecting and testing clones, rogueing of weak, genetic variants, and diseased plants to continue to develop and maintain germplasm of your SEED POTATOES favorite varieties at our laboratory. 103 Years of Seed Growing Tradition A Century Long Tradition Pioneers In Seed Potato Certification Administered since inception by the College of Agricultural and Life Sciences, University of Wisconsin – Madison, the program Much of the early research work on potato diseases and how retains a full-time staff of experienced professionals to ensure they spread was done Scientists in Germany found and that, Holland through around careful the monitoring turn thoroughness and impartiality in inspection and certification of the century. Scientists found that, through careful monitoring procedures. o of the crop and removal of unhealthy plants, Similar they could research maintain soon was a vigorous, healthy stock indefinitely. Similar research soon was Through providing information, exercising technical skill, doing b being conducted in the United States. research directed at solving problems, and conducting outreach activities, the University meets the growers at the field level. USDA plant pathologist W.A. Orton had studied potato This special relationship to the academic community brings new certification in Germany and upon his return, began to work with T information on pathogens, best practices, and introduces high potato growers and Universities to introduce those concepts quality basic seed into the marketplace.
    [Show full text]
  • 2004 Michigan Potato Research Report
    MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION 2004 MICHIGAN POTATO RESEARCH REPORT Photo on Left Left to Right: Ben Kudwa, First Last, First Last, First Last, Senator Alan Cropsey, First Last, First Last Volume 36 TABLE OF CONTENTS PAGE INTRODUCTION AND ACKNOWLEDGMENTS……………………………. 1 2004 POTATO BREEDING AND GENETICS RESEARCH REPORT David S. Douches, J. Coombs, K. Zarka, S. Copper, L. Frank, J. Driscoll and E. Estelle…………………………………………. 5 2004 POTATO VARIETY EVALUATIONS D. S. Douches, J. Coombs, L. Frank, J. Driscoll, J. Estelle, K. Zarka, R. Hammerschmidt, and W. Kirk…………………..….……...… 18 MANAGEMENT PROFILE FOR NEW POTATO VARIETIES AND LINES DECEMBER 2004 Sieg S. Snapp, Chris M. Long, Dave S. Douches, and Kitty O’Neil…...….. 50 2004 ON-FARM POTATO VARIETY TRIALS Chris Long, Dr. Dave Douches, Fred Springborn (Montcalm), Dave Glenn (Presque Isle) and Dr. Doo-Hong Min (Upper Peninsula)..…... 56 SEED TREATMENT, IN-FURROW AND SEED PLUS FOLIAR TREATMENTS FOR CONTROL OF POTATO STEM CANKER AND BLACK SCURF, 2004 W.W. Kirk and R.L. Schafer and D. Berry, P. Wharton and P. Tumbalam………………………………..……...…………..………..... 70 POTATO SEED PIECE AND VARIETAL RESPONSE TO VARIABLE RATES OF GIBBRELLIC ACID 2003-2004 Chris Long and Dr. Willie Kirk……………..……...…………..……….... 73 MANAGING RHIZOCTONIA DISEASES OF POTATO WITH OPTIMIZED FUNGICIDE APPLICATIONS AND VARIETAL SUSCEPTIBILITY; RESULTS FROM THE FIELD EXPERIMENTS. Devan R. Berry, William W. Kirk, Phillip S. Wharton, Robert L. Schafer, and Pavani G. Tumbalam………………….……….... 78 HOST PLANT RESISTANCE AND REDUCED RATES AND FREQUENCIES OF FUNGICIDE APPLICATION TO CONTROL POTATO BLIGHT (COOPERATIVE TRIAL QUAD STATE GROUP 2004) W.W.
    [Show full text]
  • Common Scab Susceptibility of 24 Most Popular Potato Cultivars in USA, Utilizing a Greenhouse Assay with Three Different Pathoge
    Common scab susceptibility of 24 most popular potato cultivars in USA, utilizing a greenhouse assay with three different pathogenic Streptomyces strains (species) Increasing disease score 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 Norland No data R Norkotah (ND) R Norkotah (ID) Shepody R Norkotah (ND) Ranger Russet No data R Norkotah (ID) R Norkotah 296 R Norkotah ID Norkotah 3 Red La Soda Shepody Yukon Gold Norkotah 8 Shepody Premier Russet Alturas Norkotah 8 Pike Premier Russet Dk Red Norland Norland Yukon Gold Norkotah 3 Russet Burbank Red La Soda Atlantic R Norkotah 296 Russet Burbank Ranger Russet Gold Rush Dk Red Norland Red La Soda Alturas R Norkotah 296 Megachip Snowden Superior Atlantic Superior Yukon Gold Snowden Russet Burbank Megachip Silverton russet Megachip Rio Grande Yukon Gold ME Dakota Pearl Atlantic Canela russet Dakota Pearl Premier Russet Yukon Gold (ID) Norkotah 3 Norland Dakota Pearl Snowden Silverton russet Superior Canela russet Dk Red Norland Pike R Norkotah ND Yukon Gold (WI) S. scabies Blazer Russet S. stelliscabiei Gold Rush S. species IdX Pike Rio Grande Alturas ME01-11h NY02-1c ID01-12c Gold Rush Yukon Gold 5.1e8 CFU/pot Norkotah 8 1.2e9 CFU/pot Blazer Russet 1e9 CFU/pot Ranger Russet Silverton russet Rio Grande Canela russet Blazer Russet Cultivars are listed along the left side of graphs, ranked by disease severity, with most susceptible at the top and most resistant at the bottom. Disease score is a combination of type of lesion (surface, pits or raised lesions) and amount of surface area affected.
    [Show full text]
  • Potato Glossary
    A Potato Glossary A Potato Glossary by Richard E. Tucker Last revised 15 Sep 2016 Copyright © 2016 by Richard E. Tucker Introduction This glossary has been prepared as a companion to A Potato Chronology. In that work, a self-imposed requirement to limit each entry to a single line forced the use of technical phrases, scientific words, jargon and terminology that may be unfamiliar to many, even to those in the potato business. It is hoped that this glossary will aid those using that chronology, and it is hoped that it may become a useful reference for anyone interested in learning more about potatoes, farming and gardening. There was a time, a century or more ago, when nearly everyone was familiar with farming life, the raising of potatoes in particular and the lingo of farming in general. They were farmers themselves, they had relatives who farmed, they knew someone who was a farmer, or they worked on a nearby farm during their youth. Then, nearly everyone grew potatoes in their gardens and sold the extra. But that was a long ago time. Now the general population is now separated from the farm by several generations. Only about 2 % of the US population lives on a farm and only a tiny few more even know anyone who lives on a farm. Words and phrases used by farmers in general and potato growers in particular are now unfamiliar to most Americans. Additionally, farming has become an increasingly complex and technical endeavor. Research on the cutting edge of science is leading to new production techniques, new handling practices, new varieties, new understanding of plant physiology, soil and pest ecology, and other advances too numerous to mention.
    [Show full text]
  • Potatoes in the Garden Dan Drost Vegetable Specialist Summary Potatoes Prefer a Sunny Location, Long Growing Season, and Fertile, Well-Drained Soil for Best Yields
    Revised April 2020 Potatoes in the Garden Dan Drost Vegetable Specialist Summary Potatoes prefer a sunny location, long growing season, and fertile, well-drained soil for best yields. Plant potato seed pieces directly in the garden 14-21 days before the last frost date. For earlier maturity, plant potatoes through a black plastic mulch. Side dress with additional nitrogen fertilizer to help grow a large plant. Irrigation should be deep and frequent. Organic mulches help conserve water, reduce weeding, and keep the soil cool during tuber growth. Control insect and diseases throughout the year. Harvest potatoes as soon as tubers begin forming (new potatoes) or as they mature. Dig storage potatoes after the vines have died, cure them for 2-3 weeks, and then store the tubers in the dark at 40-45ºF. Recommended Varieties Potatoes are categorized by maturity class (early, mid-season or late), use (baking, frying, boiling), or tuber skin characteristics (russet, smooth, or colored). When selecting varieties, consider your growing environment, primary use, and how much space you have available to grow the plants. Most varieties grow well in Utah but all are not available. Most garden centers and nurseries carry varieties that produce high quality, productive seed tubers adapted to local conditions. Skin Type Suggested Varieties Russet Butte, Gem Russet, Ranger Russet, Russet Burbank Smooth Chipeta, Katahdin, Kennebec, Yukon Gold All Blue, Caribe (blue), Cranberry Red, Red Norland, Red Pontiac, Rose Finn, Colored Viking, How to Grow Soil: Potatoes prefer organic, rich, well-drained, sandy soil for best growth. Most soils in Utah will grow potatoes provided they are well drained and fertile.
    [Show full text]
  • Percentage Starch Digested Clone ID
    Appendix 2: Best linear unbiased estimates (BLUES) for starch digestibility 2013 (Year1) Percentage starch digested clone_ID genotype time_10 time_20 time_60 POTAP_004 AGRIA 74.077589 85.349342 92.789936 POTAP_005 AILSA 63.137302 86.147197 93.925183 POTAP_008 ALMERA 58.028142 77.20361 84.038808 POTAP_009 ALPHA 68.671398 88.31017 94.410008 POTAP_010 ALWARA 71.260208 92.893806 97.218683 POTAP_011 AMADRA 67.863269 84.622794 87.381729 POTAP_013 AMOUR 71.73982 87.109706 91.001785 POTAP_014 ANNA 68.422758 89.660892 95.455937 POTAP_015 ANNABELLE 58.843815 82.74149 87.537373 POTAP_016 ANYA 63.923353 89.92991 98.354949 POTAP_017 ARGOS 72.750357 90.702675 98.963175 POTAP_018 ARIELLE 66.341745 84.861437 90.926231 POTAP_019 ARKULA 67.366239 89.333466 92.377485 POTAP_020 ARMADA 65.842359 89.406775 95.082302 POTAP_029 AVALANCHE 68.038683 81.953088 91.848666 POTAP_031 BAILLIE 65.297551 80.976885 87.636228 POTAP_032 BALMORAL 62.228443 78.502863 83.567259 POTAP_033 BAMBINO 71.038251 87.518602 88.375869 POTAP_034 BELLE DE FONTENAY 70.492098 90.744399 93.04301 POTAP_035 BENOL 63.617717 84.898645 86.105301 POTAP_036 BF 15 66.893209 85.908057 93.4925 POTAP_037 BINTJE 69.532268 87.636023 94.952961 POTAP_038 BIONICA EX SASA 69.630179 89.676473 98.449329 POTAP_040 BLUE DANUBE 71.730754 89.36174 96.121599 POTAP_041 BLUSH 64.03457 87.411882 93.846979 POTAP_042 BONNIE 69.258826 88.296975 95.359672 POTAP_043 BOUNTY 68.78771 86.568594 95.651311 POTAP_044 BRODICK 68.961964 87.478367 94.04128 POTAP_045 BRODIE 65.831021 86.983678 95.301287 POTAP_046 BUCHAN 60.789597
    [Show full text]