Renewables in Africa - Meeting the Energy Needs of the Poor / Energy Policy 1

Total Page:16

File Type:pdf, Size:1020Kb

Renewables in Africa - Meeting the Energy Needs of the Poor / Energy Policy 1 Renewables in Africa - Meeting the Energy Needs of the Poor / Energy Policy 1 Renewables in Africa - Meeting the Energy Needs of the Poor Stephen Karekezi AFREPREN/FWD African Energy Policy Research Network P.O. Box 30979, Nairobi, Kenya Tel: +254-2-566032 or 571467 Fax: +254-2-561464 E-mail: [email protected] Web-site: www.afrepren.org Abstract This paper presents estimates of renewables energy technologies disseminated in sub-Sahara Africa and evaluates the potential of renewables in meeting the energy needs of AfricaÕs poor. Using data mainly from eastern and southern Africa, the paper examines five major renewable energy technologies, namely: (i) large-scale biomass energy; (ii) small scale biomass energy (iii) solar photovoltaic; (iv) solar thermal; and, (v) wind. It then evaluates how suitable each renewable energy technology is to meeting the energy needs of the urban and rural poor. The paper ends with key measures that could encourage the large-scale dissemination of renewable energy technologies to the poor in Africa. Keywords: Renewable energy technologies, Africa, poor 1. What is Driving the Interest in adversely affected their economies. The Renewables? rapid development of renewables is often mentioned as an important response option Recent interest in renewable energy in for addressing the power problems faced by Africa is driven by, among others, the the region. following important developments. The first is the recent increase in oil prices, Two important global environment which, recently, peaked to US$ 33.16 per initiatives have also stimulated greater barrel (Economist: Jan, 98 - Dec, 2000) at a interest in renewables in Africa. The first time when AfricaÕs convertible currency was the United Nations Conference on earnings are very low due to poor world Environment and Development (UNCED) market prices and decreased volumes of its held in Rio de Janeiro, Brazil in 1992. At commodity exports. Consequently, it is this Conference, an ambitious environment estimated that in the year 2000, petroleum and development document entitled imports as a percentage of export earnings "Agenda 21" was reviewed by one of the has doubled from about 15-20% to 30-40% largest gathering of Government Heads of for a number of African countries States and, perhaps more importantly, was (AFREPREN, 2001). endorsed by a large number of multi- nationals companies. Agenda 21 sought to {Insert brief regional profile: SSA here} operationalise the concept of sustainable development. In addition, the Rio The second important development that has Conference provided the venue for the increased interest in renewables in the second important event, the signing of the region is the recurrent crises faced by most United Nations Framework Convention on power utilities in the region. For example, Climate Change (UNFCCC) by 155 in year 2000 alone, Ethiopia Kenya, Governments (United Nations, 1992). The Malawi, Nigeria and Tanzania faced Convention came into force in early 1994 unprecedented power rationing which after ratification by 50 States. Renewables in Africa - Meeting the Energy Needs of the Poor / Energy Policy 2 Renewables featured in both Agenda 21 African countries such Algeria, Angola, and the Climate Change Convention Cameroon, Nigeria and Libya. In spite of (United Nations, 1992). Because of the the continued divergence on the part of important role of fossil fuels in the build-up African energy analysts on how to respond of greenhouse gases in the atmosphere (it is to the climate change challenge, the estimated that the energy sector accounts consensus around the further development for about half the global emissions of of renewables appears to be growing. The green-house gases) and concomitant challenge of engendering a consensus on climate change concerns, renewables are renewable energy development appears to perceived to constitute an important option be less onerous than that faced by the for mitigating and abating the emissions of African energy efficiency community. greenhouse gases (Socolow, 1992). In contrast to energy efficiency that could Figure 1 Electrification % have an immediate impact on fossil fuel exports, the long-term nature of renewables The above perspective was, however, not would allow a more gradual and less initially shared by the many energy analysts disruptive transition away from dependency in Africa. In contrast to the industrialized on fossil fuels. Mobilizing support for world which is worried by the long-term renewables has, consequently, been global environmental impact of current somewhat less arduous. This viewpoint is patterns of energy production and use, bolstered by some evidence indicating that African countries are largely pre-occupied at the global level, the medium-term with the immediate problems of reversing outlook for fossil fuels demand may not be the persistent decline of their centralized as high as previously anticipated due to power systems as well a meeting the long- concerns over associated negative standing and pressing demands for a environmental impacts. In the long-term, minimum level of modern energy services fossils fuels may also become for the majority of their poor - many of uncompetitive in cost as reliance on more whom have no electricity and continue to costly oil reserves grows and alternative rely on inefficient and environmentally energy systems such as fuel cells become hazardous unprocessed biomass fuels. more affordable. Consequently, many African energy analysts believe that Although the contribution of African renewables constitute a reliable and countries to global greenhouse emissions ecologically sound long-term alternative for (GHGs) is, on a per capita basis, much virtually all African countries including smaller than that of industrialized countries current oil-exporting nations, many of (some projections, however, indicate a which have abundant and unexploited much higher contribution in the future), biomass, hydro, solar and wind resources. there is growing realization that Africa is What is not yet clear is the extent to which likely to be dis-proportionately affected by renewables can assist in addressing the the impacts of climate change. Of particular energy needs of AfricaÕs poor - the subject concern is the dependence of the poor in of this paper. Africa on rain-fed agriculture, which is believed to be already under threat from unpredictable weather patterns triggered by 2. Renewables and the Poor in what appears to be climate change. The Africa recent floods that adversely affected southern parts of Africa appear to indicate 2.1 Large-scale Biomass that the impact of climate change may Utilization already be a reality. Knowledge of large-scale biomass energy In spite of the growing evidence of climate systems is not as widespread in Africa as change, the position of the African energy that of small systems. Large-scale biomass community on the climate change question utilization encompasses: direct combustion has not been unanimous. Support for for process heat; ethanol production; renewables was, at best, lukewarm on the gasification; heat co-generation; biogas part of energy experts from oil-exporting production; and, briquetting. The best- Renewables in Africa - Meeting the Energy Needs of the Poor / Energy Policy 3 known large-scale biomass energy systems Kenya. Available evidence indicates that with sound economic track records are co- these programmes have registered generation using biomass as fuel stock and important economic benefits. At its height, the production of ethanol as a substitute for the Zimbabwe alcohol programme was petroleum fuel. capable of producing about 40 million litres and there are plans to increase annual Figure 2 Power Generation Ð output to 50 million litres (Scurlock and Mauritius: Capacity (MW) Hall, 1991). In the Zimbabwe ethanol 1998 programme, 60 % of the whole plant was locally produced and significant staff Co-generation using bagasse as feedstock to development took place (Scurlock, et al, produce both process heat and electricity is 1991). The plant has been in operation for a well-established technology in the Africa. twenty years with few maintenance As a result of extensive use of co- problems (World Resources Institute, 1994; generation in Mauritius, the country's sugar Karekezi and Ranja, 1997). industry is self-sufficient in electricity and sells excess power to the national grid The total investment cost of Kenya's (Baguant, 1992). As shown in the following ethanol plant is estimated to be US $ 15 graph, in 1998, close to 25% of the million. At its peak, plant production country's electricity was generated from averaged about 45,000 litres per day sugar industry, largely using bagasse, a by- (Baraka, 1991). The plant used surplus product of the sugar industry (Deepchand, molasses that were an environmental hazard 2000). In the next few years, it is expected because of the past practice of dumping that the sugar industry may be able to surplus molasses in a nearby river. The account for close to a third of the countryÕs ethanol was blended with gasoline at a ratio electricity needs (Karekezi and Ranja, of 1:9. Since it was commissioned, Kenya's 1997). ethanol programme has continued to register annual losses mainly due to the It is estimated that modest capital prevailing low Government-controlled investments combined with judicious retail prices (which have since been equipment selection, modifications of sugar liberalized); inadequate plant maintenance manufacturing processes (to reduce energy and operation; resistance from local use in the manufacture of sugar) and proper subsidiaries of multinational oil companies; planning could yield a 13-fold increase in and, unfavourable exchange rate which has the amount of electricity generated by sugar significantly increased the local cost of factories and sold to the national Mauritian servicing the loan that financed the power utility (Baguant, 1992). establishment of the plant. In an attempt to break even, the plant has had to export 13.3 The potential impact of increased million litres of crude ethanol (Kenya investment in co-generation for the poor is Times, 1991). The plant has, however, not well understood.
Recommended publications
  • Zimbabwe Rural Electrification Study
    Zimbabwe Rural Electrification Study ESM228 Energy Sector Management Assistance Programme Report 228/00 EJol AD March 2000 JOINT UNDP / WORLD BANK ENERGY SECTOR MANAGEMENT ASSISTANCE PROGRAMME (ESMAP) PURPOSE The Joint UNDP/World Bank E nergy Sector Management Assistance Programme (ESMAP) is a special global technical assistance program run as part of the World Bank's Energy, Mining and Telecommunications Department. ESMAP provides advice to governments on sustainable energy development. Established with the support of UNDP and bilateral official donors in 1983, it focuses on the role of energy in the development process with the objective of contributing to poverty alleviation, improving living conditions and preserving the environment in developing countries and transition economies. ESMAP centers its interventions on three priority areas: sector reform and restructuring; access to modern energy for the poorest; and promotion of sustainable energy practices. GOVERNANCE AND OPERATIONS ESMAP is governed by a Consultative Group (ESMAP CG) composed of representatives of the UNDP and World Bank, other donors, and development experts from regions benefiting from ESMAP's assistance. The ESMAP CG is chaired by a World Bank Vice President, and advised by a Technical Advisory Group (TAG) of four independent energy experts that reviews the Programme's strategic agenda, its work plan, and its achievements. ESMAP relies on a cadre of engineers, energy planners, and economists from the World Bank to conduct its activities under the guidance of the
    [Show full text]
  • Africa Disclaimer
    World Small Hydropower Development Report 2019 Africa Disclaimer Copyright © 2019 by the United Nations Industrial Development Organization and the International Center on Small Hydro Power. The World Small Hydropower Development Report 2019 is jointly produced by the United Nations Industrial Development Organization (UNIDO) and the International Center on Small Hydro Power (ICSHP) to provide development information about small hydropower. The opinions, statistical data and estimates contained in signed articles are the responsibility of the authors and should not necessarily be considered as reflecting the views or bearing the endorsement of UNIDO or ICSHP. Although great care has been taken to maintain the accuracy of information herein, neither UNIDO, its Member States nor ICSHP assume any responsibility for consequences that may arise from the use of the material. This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as ‘developed’, ‘industrialized’ and ‘developing’ are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. This document may be freely quoted or reprinted but acknowledgement is requested.
    [Show full text]
  • Metering and Payment Technologies for Mini-Grids: an Analysis of the Market in Zimbabwe
    Metering and Payment Technologies for Mini-grids: An Analysis of the Market in Zimbabwe Practical Action Consulting Southern Africa Contents Introduction ........................................................................................................................... 1 Off-grid Energy Sector Overview ........................................................................................... 1 Relevant Policies .................................................................................................................. 2 Renewable Energy Potential ................................................................................................. 4 Solar Energy..................................................................................................................... 4 Hydroelectric Energy ........................................................................................................ 7 Biomass Energy ............................................................................................................... 8 Wind Power .................................................................................................................... 10 Diesel/Petrol Off-grid Generation ........................................................................................ 12 Decentralised Generation and Mini-grids in Zimbabwe ....................................................... 12 Metering Technologies ........................................................................................................ 13 Conclusion
    [Show full text]
  • Barriers and Solutions for Increasing the Integration of Solar Photovoltaic in Kenya’S Electricity Mix
    energies Review Barriers and Solutions for Increasing the Integration of Solar Photovoltaic in Kenya’s Electricity Mix Dominic Samoita 1 , Charles Nzila 2, Poul Alberg Østergaard 3,* and Arne Remmen 4 1 Department of Electrical and Communications Engineering, Moi University, P.O. Box 3900 Eldoret, Kenya; [email protected] 2 Department of Manufacturing, Industrial and Textiles Engineering, Moi University, P.O. Box 3900 Eldoret, Kenya; [email protected] 3 Department of Planning, Aalborg University, Rendsburggade 14, 9000 Aalborg, Denmark 4 Department of Planning, Aalborg University, A.C. Meyers Vænge 15, 2450 Copenhagen, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +45-9940-8424 Received: 4 September 2020; Accepted: 13 October 2020; Published: 20 October 2020 Abstract: Currently, Kenya depends mainly on oil, geothermal energy and hydro resources for electricity production, however all three have associated issues. Oil-based electricity generation is environmentally harmful, expensive and a burden to the national trade balance. The rivers for hydropower and their tributaries are found in arid and semi-arid areas with erratic rainfall leading to problems of supply security, and geothermal exploitation has cost and risk issues amongst others. Given these problems and the fact that Kenya has a significant yet underexploited potential for photo voltaic (PV)-based power generation, the limited—although growing—exploitation of solar PV in Kenya is explored in this paper as a means of diversifying and stabilising electricity supply. The potential for integration of PV into the Kenyan electricity generation mix is analysed together with the sociotechnical, economic, political, and institutional and policy barriers, which limit PV integration.
    [Show full text]
  • Africa Connected Issue 3
    ISSUE 3 | NOVEMBER 2019 Africa Connected ENERGY IN AFRICA – INNOVATION, INVESTMENT AND RISK The role of gas in powering Africa’s future The rise of alternative energy in Africa: Geothermal power generation Can AfCFTA solve Africa’s energy challenge? Rwanda’s Lake Kivu: Electricity generation Leveraging private investment in power through methane gas transmission infrastructure in West Africa Land acquisition in Kenya: Power reforms in West Africa: The Achilles’ heel of the energy sector Challenges, prospects and opportunities Renewable energy in Mozambique AFRICA CONNECTED | ISSUE 3 | NOVEMBER 2019 Contents The role of gas in powering Africa’s future 04 BY SIMON COLLIER Can AfCFTA solve Africa’s energy challenge? 08 BY RODWYN PETERSON AND INNOCENT SAMPA Leveraging private investment in power 11 transmission infrastructure in West Africa BY JOSEPH LAM Power reforms in West Africa: Challenges, 15 prospects and opportunities BY OGECHI ONUOHA The rise of alternative energy in Africa: 20 Geothermal power generation BY LISA DUTIRO Rwanda’s Lake Kivu: Electricity generation 23 through methane gas BY COLETTE BITALI Land acquisition in Kenya: The Achilles’ heel 25 of the energy sector BY BEATRICE NYABIRA, JUDY MUIGAI AND JANE NDUATI Renewable energy in Mozambique 28 BY ISABEL JAMACA To find out how we can help you do business in Africa, please get in touch: [email protected] 2 WWW.DLAPIPER.COM/AFRICA Connecting you to Africa This issue’s focus is innovation, investment and risk in Africa’s energy sector. Our Africa-wide articles look at the role of gas in powering Africa’s future, geothermal power generation, and whether the African Continental Free Trade area can solve the continent’s energy challenge.
    [Show full text]
  • Energy for Development
    Energy for Development The Beijer Institute The Scandinavian Institute Thc Royat Swedish of A-ffican Studies Arrtdemy of Sciences UppsaEa, Sweden Stockholm, Sweden ENERGY, ENVIRONMENT AND DEVELOPMENT IN AFRICA 11 ENERGY FOR DEVELOPMENT IN ZIMBABWE Edited by Richard H. Hosier Published by THE BEUER INSTITUTE and THE SCANDINAVIAN INSTITUTE The Royal Swedish OF AFRICAN STUDIES Academy of Sciences Uppsala, Sweden Stockholm, Sweden The series "Energy, Environment and Development in Africa" is published jointly by the Beijer Institute and the Scandinavian Institute of African Studies, with financial support from the Swedish International Development Authority (SIDA). ENERGY, ENVIRONMENT AND DEVELOPMENT IN AFRICA Other titles in this series: 1. Energy and Development in Kenya: Opportunities and Constraints. P. 0' Keefe, P. Raskin and S. Bernow (Eds). 2. SADCC: Energy and Development to the Year 2000. J.T.C Simoes (Ed). 3. Energy and Development in Southern Africa: SADCC Country Studies, Part I. P. 0' Keefe and B. Munslow (Eds). 4. Energy and Development in Southern Africa: SADCC Country Studies, Part 11. P. 0' Keefe and B. Munslow (Eds). 5. Manufacturing Industry and Economic Development in the SADCC Countries. R. Peet. 6. Wood, Energy and Households: Perspectives on Rural Kenya. C. Barnes, J. Ensminger and P. 0' Keefe (Eds). 7. Energy Use in Rural Kenya: Household Demands and Rural Transformation. R.H. Hosier. 8. LEAP: A Description of the LDC Energy Alternatives Planning System. Paul D. Raskin. 9. Zimbabwe: Energy Planning for National Development. R.H. Hosier (Ed). 10. Zimbabwe: Industrial and Commercial Energy Use. R.H. Hosier (Ed). 11. Energy for Rural Development in Zimbabwe.
    [Show full text]
  • Solar Energy Potential in Rural Zimbabwe
    SOLAR PV POTENTIAL IN RURAL ZIMBABWE ANALYSING NATURAL AND ECONOMICAL POTENTIAL Koen van Kuijk VRIJE UNIVERSITEIT AMSTERDAM November 2012 Vrije Universiteit Amsterdam Master thesis Earth science, Earth and Economics K. van Kuijk Bos en lommerplein 165P 1055 AD Amsterdam [email protected] Supervisors VU: Dr. P. J. H. van Beukering [email protected] Dr. M. Bokhorst [email protected] Institute for Environmental Studies (IVM) Vrije Universiteit De Boelelaan 1087 1081 HV Amsterdam The Netherlands Supervisor internship SNV: Erik Boonstoppel Program Leader Renewable Energy SNV Netherlands Development Organisation Zimbabwe 6 Caithness Road, Eastlee Harare, Zimbabwe [email protected] 2 Solar PV Rural Market Assessment in Zimbabwe Abstract Socioeconomic development in Zimbabwe is reduced by the fact that a majority of the households in rural areas has no access to electricity. Households rely for their energy supply on expensive and unsustainable products like paraffin oil and fire wood. The fact that Zimbabwe has an average annual of 8.3 sun hours per day makes the country suitable for solar energy; one solution for this energy shortage could be the development of a solar energy network in rural Zimbabwe. This research examines the economical and natural potential for solar energy to find out whether there are possibilities to develop a sustainable solar energy sector not based on long-term subsidy programs. Through two different paths, the natural and economic potential of solar energy in rural areas in Zimbabwe is examined. The natural potential of solar energy is derived from sun hours data from the meteorological institute in Zimbabwe using the angstrom analysis.
    [Show full text]
  • Investment Opportunities Brochure
    Opportunities In Zimbabwe’s Energy Sector Invest in Zimbabwe’s For sustainable energy energy sector now! ZIMBABWE ENERGY REGULATORY AUTHORITY Why invest in Zimbabwe’s Energy Sector Zimbabwe is endowed with immense energy resources that are currently underutilised. The country’s diverse renewable and coal resources present investment opportunities in the electricity and petroleum sub-sectors. These untapped resources underpin Zimbabwe’s status as the gateway to the vast southern African market with a huge potential for growth. Location Zimbabwe is located at the heart of Southern Africa which makes it strategic and able to supply energy needs within the region. Investors should capitalise on the increased energy demand in the Southern African Development Community (SADC) and Common Market for Eastern and Southern Africa (COMESA) region by investing in Zimbabwe. The country has the best climate for the growth of renewable energy projects and vast deposits of coal which can be harnessed through clean technologies. Opportunities Demand for modern energy in the SADC region is growing. The regional average electrification rate is still f while Zimbabwe stands at 40%. Zimbabwe and the region therefore present opportunities for greater uptake of modern energy. Diverse Energy Resources Zimbabwe is rich in large deposits of coal resources which are largely underdeveloped or yet to be utilised. The country’s economic potential is underpinned by the best solar irradiation, vast biofuels, significant wind potential, perennial rivers for small hydro projects and coal bed methane deposits. 1 ZIMBABWE ENERGY REGULATORY AUTHORITY Zimbabwe’s electricity supply is outstripped by demand, thus creating plenty of opportunities for either direct investment (as Independent Power Producers) in the sector or joint venture participation with the power utility.It is estimated that 5 000 MW can be harnessed along Zambezi River which is shared with Zambia.
    [Show full text]
  • Zimbabwe: an Assessment of the Electricity Industry and What Needs to Be Done
    Zimbabwe: An Assessment of the Electricity Industry and What Needs to Be Done Zimbabwe highlights the weaknesses in power pooling that typically occur in third world countries, particularly when foreign currency is in short supply. The electricity industry's monopoly should be abolished, independent Charles Mbohwa has a bachelors power producers should be attracted into the industry, in Mechanical Engineering from the and an independent regulator should be created for the University of Zimbabwe and a masters in Operations Management power sector. and Manufacturing Systems from University of Nottingham, England. Charles Mbohwa He has taught at the University of Zimbabwe and has been a consultant/researcher for UNDP, DANIDA, DNV Zimbabwe, and for I. Introduction incurred due to the disruptions the African Energy Policy Research can be regarded as an invisible Network (AFREPREN). He is Zimbabwe currently has an tariff that the customers of the currently a Ph.D. student in Shuichi electricity generation capacity of utility have to pay. Large-scale Fukuda's Laboratory at the Tokyo just about 2,000 MW, valued at investment in electricity genera- Metropolitan Institute of Technology about $2.5 billion (U.S.). The sys- tion requires a lot of capital. An in Japan, where he can be contacted tem maximum demand is via email at extra capacity of 300 MW would [email protected]. 2,034 MVA (megavoltampere). require around $450 million in The author acknowledges the support Energy imports have at times investment capital (assume an of the Swedish International risen to 50 percent of total energy average of $1,500 per kW capacity Development Co-operation Agency needs.
    [Show full text]
  • Renewable Energy in Africa
    Renewable Energy in Africa EDITION 2 www.dlapiper.com Renewable Energy in Africa Contents DLA Piper in Africa 03 Mauritius 71 Uganda 155 Introduction 04 Morocco 81 Zambia 166 Angola 08 Mozambique 90 Zimbabwe 178 Botswana 19 Namibia 102 Appendix A 186 Burundi 29 Nigeria 113 Acknowledgments 188 Ethiopia 38 Senegal 126 DLA Piper Globally 190 Ghana 49 South Africa 136 Kenya 59 Tanzania 146 2 Renewable Energy in Africa DLA Piper in Africa It is often said that doing business DLA Piper Africa has offices in With the benefit of our global reach in Africa offers unique opportunities 20 countries across the continent, and strong local market knowledge, and challenges. We are one of the offering clients unrivalled coverage. we deliver legal services to a broad most active law firms in Africa and This comprehensive offering is the range of clients including: project it is our experience that, in order to result of over 15 years of commitment sponsors; governments; parastatals; see the opportunities and address and experience in Africa, combined EPC and O&M contractors; off-takers; the challenges, it is necessary to with long-standing relationships with and banking and financial institutions understand the cultural, economic and national firms, many dating back to in the renewables, power, oil and gas, political nuances that exist across this the 1990s. These firms have now been telecommunications, infrastructure vast and diverse continent. Our strong brought together as DLA Piper Africa, and mining sectors. and comprehensive presence across and we also have over 200 Africa the African continent gives us this lawyers who work on Africa-related critical local know-how.
    [Show full text]
  • The Design of a Stand Alone Power System for Chipendeke
    THE DESIGN OF A STAND ALONE POWER SYSTEM FOR CHIPENDEKE BY TJEDZA MASOLA UNDER THE SUPERVISION OF DR GM SHAFIULLAH SUBMITTED FOR THE SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY BACHELOR OF ELECTRICAL AND RENEWABLE ENERGY ENGINEERING ENG 470 HONOURS PROJECT Declaration I certify that the information, methods and assistance obtained during the preparation of this thesis has been acknowledged to the best of my knowledge and ability. This work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated. Signed: _______________________________ Abstract This study developed a hybrid renewable energy integrated stand- alone power system for the community of Chipendeke, a remote area located in Zimbabwe. A techno-economic feasibility study has been undertaken to identify the prospect of the proposed hybrid power system. The study considers various technical and financial options that are available for the system with multiple distribution generation applications and the selection of the most optimum solution for the community. Information about the community was researched, which included their way of life, load demand, future requirements and the renewable energy resources available in the area. This information, as well as the current prices of the required components of the system, were used to develop a model for the microgrid for Chipendeke. This thesis has only considered the design and costs of the system and more simulations and studies need to be undertaken in order for this system to be implemented. These would include analysing the current transmission system as well as developing protection strategies. By developing a hybrid renewable stand-alone model, this study aims to be a useful resource for future work that is done within the community of Chipendeke.
    [Show full text]
  • National Renewable Energy Policy
    Republic of Zimbabwe MINISTRY OF ENERGY AND POWER DEVELOPMENT National Renewable Energy Policy March 2019 National Renewable Energy Policy | Table of contents Table of contents 1. Country Overview 13 1.1 Demographics 13 1.2 Economy 13 1.3 Energy Sector 13 1.4 Current Acts and Policies 14 1.5 Consultations 15 2. Renewable Energy in Zimbabwe 16 2.1 Renewable Energy Potential in Zimbabwe 16 3. Barriers to Uptake of Renewable Energy in Zimbabwe 17 4. Policy Vision, Goal and Objectives 19 4.1 Vision 19 4.2 Policy Principles 19 4.3 Goals and Objectives 20 5. Policy Term 20 6. Setting Targets for Renewable Energy 21 6.1 Policy Provisions to Enforce Renewable Energy Targets 22 6.1.1 Objectives 22 6.1.2 Action Points 23 7. Incentives for Promoting Investment in Renewable Energy 24 7.1 National Project Status and Tax Incentives to Renewable Energy Projects 24 7.2 Prescribed Asset Status to Renewable Energy Projects 24 7.3 Viability Gap Funding for Off-grid Community Project in Rural Areas 24 7.4 Incentives for Sale of Power to Third Party Grid Access 24 7.5 Reduced Licensing Fees and Requirements for Developers of Renewable Energy Projects 25 7.6 Policy Provisions to Provide Incentives for Promoting Investment in Renewable Energy 25 7.6.1 Objectives 25 7.6.2 Action Points 26 8. Procurement Mechanisms for Renewable Energy in Zimbabwe 26 8.1 Sale of Power to the Utility 26 8.1.1 Standard Bankable PPA and RfP 27 8.2 Procurement of Energy from Government Utilities 28 01 National Renewable Energy Policy | Table of contents 8.3 Policy Provisions for Procurement 28 8.3.1 Objectives 28 8.3.2 Action Points 29 9.
    [Show full text]