Big Data Management of Hospital Data Using Deep Learning and Block-Chain Technology: a Systematic Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Building Machine Learning Inference Pipelines at Scale
Building Machine Learning inference pipelines at scale Julien Simon Global Evangelist, AI & Machine Learning @julsimon © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Problem statement • Real-life Machine Learning applications require more than a single model. • Data may need pre-processing: normalization, feature engineering, dimensionality reduction, etc. • Predictions may need post-processing: filtering, sorting, combining, etc. Our goal: build scalable ML pipelines with open source (Spark, Scikit-learn, XGBoost) and managed services (Amazon EMR, AWS Glue, Amazon SageMaker) © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Apache Spark https://spark.apache.org/ • Open-source, distributed processing system • In-memory caching and optimized execution for fast performance (typically 100x faster than Hadoop) • Batch processing, streaming analytics, machine learning, graph databases and ad hoc queries • API for Java, Scala, Python, R, and SQL • Available in Amazon EMR and AWS Glue © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLlib – Machine learning library https://spark.apache.org/docs/latest/ml-guide.html • Algorithms: classification, regression, clustering, collaborative filtering. • Featurization: feature extraction, transformation, dimensionality reduction. • Tools for constructing, evaluating and tuning pipelines • Transformer – a transform function that maps a DataFrame into a new -
Open Source in the Enterprise
Open Source in the Enterprise Andy Oram and Zaheda Bhorat Beijing Boston Farnham Sebastopol Tokyo Open Source in the Enterprise by Andy Oram and Zaheda Bhorat Copyright © 2018 O’Reilly Media. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐ tions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editor: Michele Cronin Interior Designer: David Futato Production Editor: Kristen Brown Cover Designer: Karen Montgomery Copyeditor: Octal Publishing Services, Inc. July 2018: First Edition Revision History for the First Edition 2018-06-18: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Open Source in the Enterprise, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the informa‐ tion and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights. -
March 2012 Version 2
WWRF VIP WG CONNECTED VEHICLES White Paper Connected Vehicles: The Role of Emerging Standards, Security and Privacy, and Machine Learning Editor: SESHADRI MOHAN, CHAIR CONNECTED VEHICLES WORKING GROUP PROFESSOR, SYSTEMS ENGINEERING DEPARTMENT UA LITTLE ROCK, AR 72204, USA Project website address: www.wwrf.ch This publication is partly based on work performed in the framework of the WWRF. It represents the views of the authors(s) and not necessarily those of the WWRF. EXECUTIVE SUMMARY The Internet of Vehicles (IoV) is an emerging technology that provides secure vehicle-to-vehicle (V2V) communication and safety for drivers and their passengers. It stands at the confluence of many evolving disciplines, including: evolving wireless technologies, V2X standards, the Internet of Things (IoT) consisting of a multitude of sensors that are housed in a vehicle, on the roadside, and in the devices worn by pedestrians, the radio technology along with the protocols that can establish an ad-hoc vehicular network, the cloud technology, the field of Big Data, and machine intelligence tools. WWRF is presenting this white paper inspired by the developments that have taken place in recent years in standards organizations such as IEEE and 3GPP and industry consortia efforts as well as current research in academia. This white paper provides insights into the state-of-the-art regarding 3GPP C-V2X as well as security and privacy of ETSI ITS, IEEE DSRC WAVE, 3GPP C-V2X. The White Paper further discusses spectrum allocation worldwide for ITS applications and connected vehicles. A section is devoted to a discussion on providing connected vehicles communication over a heterogonous set of wireless access technologies as it is imperative that the connectivity of vehicles be maintained even when the vehicles are out of coverage and/or the need to maintain vehicular connectivity as a vehicle traverses multiple wireless access technology for access to V2X applications. -
Serverless Predictions at Scale
Serverless Predictions at Scale Thomas Reske Global Solutions Architect, Amazon Web Services © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Serverless computing allows you to build and run applications and services without thinking about servers © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. What are the benefits of serverless computing? No server management Flexible scaling $ Automated high availability No excess capacity © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Machine Learning Process Fetch data Operations, Clean monitoring, and and optimization format data Integration Prepare and and deployment transform data Evaluation and Model Training verificaton © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Machine Learning Process Fetch data Operations, Clean How can I use pre-trained monitoring, and and models for serving optimization format data predictions? How to scale effectively? Integration Prepare and and deployment transform data Evaluation and Model Training verificaton © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. What exactly are we deploying? © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. A Pre-trained Model... • ... is simply a model which has been trained previously • Model artifacts (structure, helper files, parameters, weights, ...) are files, e.g. in JSON or binary format • Can be serialized (saved) and de-serialized (loaded) by common deep learning frameworks • Allows for fine-tuning of models („head-start“ or „freezing“), but also to apply them to similar problems and different data („transfer learning“) • Models can be made publicly available, e.g. in the MXNet Model Zoo © 2018, Amazon Web Services, Inc. -
Analytics Lens AWS Well-Architected Framework Analytics Lens AWS Well-Architected Framework
Analytics Lens AWS Well-Architected Framework Analytics Lens AWS Well-Architected Framework Analytics Lens: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Analytics Lens AWS Well-Architected Framework Table of Contents Abstract ............................................................................................................................................ 1 Abstract .................................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Definitions ................................................................................................................................. 2 Data Ingestion Layer ........................................................................................................... 2 Data Access and Security Layer ............................................................................................ 3 Catalog and Search Layer ................................................................................................... -
Comparativa De Tecnologías De Deep Learning
Universidad Carlos III de Madrid Departamento de Informática Proyecto Final de Carrera Comparativa de Tecnologías de Deep Learning Author: Alberto Lozano Benjumea Supervisors: Alejandro Baldominos Gómez Ignacio Navarro Martín Leganés.Septiembre de 2017 Alberto Lozano Benjumea Universidad Carlos III de Madrid Avenida de la Universidad, 30 28911 Leganés, Madrid (Spain) Email: [email protected] “Just because it’s not nice doesn’t mean it’s not miraculous” Terry Pratchett This page has been intentionally left blank. Abstract Este proyecto se localiza en la rama de aprendizaje automático del campo de la in- teligencia artificial. El objetivo del mismo es realizar una comparativa de los diferentes frameworks y bibliotecas existentes en el mercado, a día de la realización del presente documento, sobre aprendizaje profundo. Esta comparativa, pretende compararlos us- ando diferentes métricas y una batería heterogénea de pruebas. Adicionalmente se realizará un detallado estudio del arte indicando las técnicas sobre las que sustentan dichas bibliotecas. Se indicarán con ejemplos cómo usar cada una de estas técnicas, las ventajas e inconvenientes de las mismas y sus relaciones. Keywords: aprendizaje profundo, aprendizaje automático frameworks, comparativa v This page has been intentionally left blank. Agradecimientos Probablemente se podría escribir la mitad del documento con agradecimientos a las personas que han influido en que este documento pueda existir. Podría partir de mi abuelo quién me enseñó la informática y lo que se podía lograr con el Amstrad y de ahí hasta el día de hoy, a familia, compañeros, amigos que te influyen, incluso las personas que influyen negativamente, con los que ves que que camino no debes escoger. -
Ezgi Korkmaz Outline
KTH ROYAL INSTITUTE OF TECHNOLOGY BigDL: A Distributed Deep Learning Framework for Big Data ACM Symposium on Cloud Computing 2019 [Acceptance Rate: 24%] Jason Jinquan Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang Wang, Xianyan Jia, Cherry Li Zhang, Yan Wan, Zhichao Li, Jiao Wang, Sheng- sheng Huang, Zhongyuan Wu, Yang Wang, Yuhao Yang, Bowen She, Dongjie Shi, Qi Lu, Kai Huang, Guoqiong Song. [Intel Corporation] Presenter: Ezgi Korkmaz Outline I Deep learning frameworks I BigDL applications I Motivation for end-to-end framework I Drawbacks of prior approaches I BigDL framework I Experimental Setup and Results of BigDL framework I Critique of the paper 2/16 Deep Learning Frameworks I Big demand from organizations to apply deep learning to big data I Deep learning frameworks: I Torch [2002 Collobert et al.] [ C, Lua] I Caffe [2014 Berkeley BAIR] [C++] I TensorFlow [2015 Google Brain] [C++, Python, CUDA] I Apache MXNet [2015 Apache Software Foundation] [C++] I Chainer [2015 Preferred Networks] [ Python] I Keras [2016 Francois Chollet] [Python] I PyTorch [2016 Facebook] [Python, C++, CUDA] I Apache Spark is an open-source distributed general-purpose cluster-computing framework. I Provides interface for programming clusters with data parallelism 3/16 BigDL I A library on top of Apache Spark I Provides integrated data-analytics within a unifed data analysis pipeline I Allows users to write their own deep learning applications I Running directly on big data clusters I Supports similar API to Torch and Keras I Supports both large scale distributed training and inference I Able to run across hundreds or thousands servers efficiently by uses underlying Spark framework 4/16 BigDL I Developed as an open source project I Used by I Mastercard I WorldBank I Cray I Talroo I UCSF I JD I UnionPay I GigaSpaces I Wide range of applications: transfer learning based image classification, object detection, feature extraction, sequence-to-sequence prediction, neural collaborative filtering for reccomendation etc. -
Apache Mxnet on AWS Developer Guide Apache Mxnet on AWS Developer Guide
Apache MXNet on AWS Developer Guide Apache MXNet on AWS Developer Guide Apache MXNet on AWS: Developer Guide Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Apache MXNet on AWS Developer Guide Table of Contents What Is Apache MXNet? ...................................................................................................................... 1 iii Apache MXNet on AWS Developer Guide What Is Apache MXNet? Apache MXNet (MXNet) is an open source deep learning framework that allows you to define, train, and deploy deep neural networks on a wide array of platforms, from cloud infrastructure to mobile devices. It is highly scalable, which allows for fast model training, and it supports a flexible programming model and multiple languages. The MXNet library is portable and lightweight. It scales seamlessly on multiple GPUs on multiple machines. MXNet supports programming in various languages including Python, R, Scala, Julia, and Perl. This user guide has been deprecated and is no longer available. For more information on MXNet and related material, see the topics below. MXNet MXNet is an Apache open source project. For more information about MXNet, see the following open source documentation: • Getting Started – Provides details for setting up MXNet on various platforms, such as macOS, Windows, and Linux. -
Open Source in the Enterprise
opensource.amazon.com 企业中的开放源代码 Andy Oram 和 Zaheda Bhorat 企业中的开放源代码 作者:Andy Oram 和 Zaheda Bhorat 版权 © 2018 O'Reilly Media 所有。保留所有权利。 本书采用知识共享组织署名-非商业性使用 4.0 国际许可协议进行授权。要查看该许可, 请访问 http://creativecommons.org/licenses/by-nc/4.0/ 或致函以下地址:Creative Commons, PO Box 1866, Mountain View, CA 94042, USA。 本书中表达的观点是作者的观点,并不代表出版商的看法。虽然出版商和作者都真诚地付出 努力来确保本书中所含的信息和说明准确无误,但双方对错误或遗漏之处(包括但不限于因 使用或依据本书而导致的任何损失)概不负责。使用本书中所含的信息和说明带来的风险将 由您自行承担。如果本书中包含或介绍的任何代码示例或其他技术需遵循开源许可证或涉及 他人知识产权,您应负责确保对相应代码示例和技术的使用遵循此类许可证和/或知识产权 规定。 本书由 O'Reilly 与 Amazon 协作完成。 目录 鸣谢 ................................................................................................................................... vii 企业中的开放源代码 ..................................................................................................... 1 为什么公司和政府均改为使用开放源代码? ..................................................................2 不仅仅需要许可证或代码 .....................................................................................................4 了解开放源代码的准备工作 ................................................................................................5 采用开放源代码 ......................................................................................................................7 参与项目社区 ........................................................................................................................ 13 为开源项目做贡献 ............................................................................................................... 17 启动开源项目 ....................................................................................................................... -
Giant List of AI/Machine Learning Tools & Datasets
Giant List of AI/Machine Learning Tools & Datasets AI/machine learning technology is growing at a rapid pace. There is a great deal of active research & big tech is leading the way. Luckily there are also a lot of resources out there for the technologist to utilize. So many we had to cherry pick what look like the most legit & useful tools. 1. Accord Framework http://accord-framework.net 2. Aligned Face Dataset from Pinterest (CCO) https://www.kaggle.com/frules11/pins-face-recognition 3. Amazon Reviews Dataset https://snap.stanford.edu/data/web-Amazon.html 4. Apache SystemML https://systemml.apache.org 5. AWS Open Data https://registry.opendata.aws 6. Baidu Apolloscapes http://apolloscape.auto 7. Beijing Laboratory of Intelligent Information Technology Vehicle Dataset http://iitlab.bit.edu.cn/mcislab/vehicledb 8. Berkley Caffe http://caffe.berkeleyvision.org 9. Berkley DeepDrive https://bdd-data.berkeley.edu 10. Caltech Dataset http://www.vision.caltech.edu/html-files/archive.html 11. Cats in Movies Dataset https://public.opendatasoft.com/explore/dataset/cats-in-movies/information 12. Chinese Character Dataset http://www.iapr- tc11.org/mediawiki/index.php?title=Harbin_Institute_of_Technology_Opening_Recognition_Corpus_for_Chinese_Characters_(HIT- OR3C) 13. Chinese Text in the Wild Dataset (CC4.0) https://ctwdataset.github.io 14. CelebA Dataset (research only) http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html 15. Cityscapes Dataset https://www.cityscapes-dataset.com | License 16. Clash of Clans User Comments Dataset (GPL 2) https://www.kaggle.com/moradnejad/clash-of-clans-50000-user-comments 17. Core ML https://developer.apple.com/machine-learning 18. Cornell Movie Dialogs Corpus http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html 19. -
Anima Anandkumar
ANIMA ANANDKUMAR DISTRIBUTED DEEP LEARNING PRACTICAL CONSIDERATIONS FOR MACHINE LEARNING SOFTWARE PACKAGES TITLE OF SLIDE UTILITY DIVERSE & COMPUTING LARGE DATASETS CHALLENGES IN DEPLOYING LARGE-SCALE LEARNING TITLE OF SLIDE CHALLENGES IN DEPLOYING LARGE-SCALE LEARNING • Complex deep network TITLE OF SLIDE • Coding from scratch is impossible • A single image requires billions floating-point operations • Intel i7 ~500 GFLOPS • Nvidia Titan X: ~5 TFLOPS • Memory consumption is linear with number of layers DESIRABLE ATTRIBUTES IN A ML SOFTWARE PACKAGE {…} TITLE OF SLIDE PROGRAMMABILITY PORTABILITY EFFICIENCY Simplifying network Efficient use In training definitions of memory and inference TensorFlow TITLE OF SLIDE Torch CNTK MXNET IS AWS’S DEEP LEARNING TITLE OF SLIDE FRAMEWORK OF CHOICE MOST OPEN BEST ON AWS Apache (Integration with AWS) {…} {…} PROGRAMMABILITY frontend backend TITLE OF SLIDE single implementation of performance guarantee backend system and regardless which front- common operators end language is used IMPERATIVE PROGRAMMING PROS • Straightforward and flexible. import numpy as np a = np.ones(10) • Take advantage of language b = np.ones(10) * 2 native features (loop, c = b * a condition, debugger) TITLE OF SLIDE cd = c + 1 • E.g. Numpy, Matlab, Torch, … Easy to tweak CONS with python codes • Hard to optimize DECLARATIVE PROGRAMMING A = Variable('A') PROS B = Variable('B') • A B More chances for optimization C = B * A • Cross different languages D = C + 1 X 1 f = compile(D) • E.g. TensorFlow, Theano, + TITLE OF SLIDE d = f(A=np.ones(10), -
Machine Learning
1 LANDSCAPE ANALYSIS MACHINE LEARNING Ville Tenhunen, Elisa Cauhé, Andrea Manzi, Diego Scardaci, Enol Fernández del Authors Castillo, Technology Machine learning Last update 17.12.2020 Status Final version This work by EGI Foundation is licensed under a Creative Commons Attribution 4.0 International License This template is based on work, which was released under a Creative Commons 4.0 Attribution License (CC BY 4.0). It is part of the FitSM Standard family for lightweight IT service management, freely available at www.fitsm.eu. 2 DOCUMENT LOG Issue Date Comment Author init() 8.9.2020 Initialization of the document VT The second 16.9.2020 Content to the most of chapters VT, AM, EC version Version for 6.10.2020 Content to the chapter 3, 7 and 8 VT, EC discussions Chapter 2 titles 8.10.2020 Chapter 2 titles and Acumos added VT and bit more to the frameworks Towards first full 16.11.2020 Almost every chapter has edited VT version First full version 17.11.2020 All chapters reviewed and edited VT Addition 19.11.2020 Added Mahout and H2O VT Fixes 22.11.2020 Bunch of fixes based on Diego’s VT comments Fixes based on 24.11.2020 2.4, 3.1.8, 6 VT discussions on previous day Final draft 27.11.2020 Chapters 5 - 7, Executive summary VT, EC Final draft 16.12.2020 Some parts revised based on VT comments of Álvaro López García Final draft 17.12.2020 Structure in the chapter 3.2 VT updated and smoke libraries etc.