Temperature-Sensitive Periods of Mutations

Total Page:16

File Type:pdf, Size:1020Kb

Temperature-Sensitive Periods of Mutations J. Cell Set. 43, 59-74 (1980) Printed in Great Britain © Company of Biologists Limited igSo TEMPERATURE-SENSITIVE PERIODS OF MUTATIONS AFFECTING CELL DIVISION IN TETRAHYMENA THERMOPHILA JOSEPH FRANKEL,* JYM MOHLERf AND ANNE KOOPMANS FRANKEL Department of Zoology, University of Iowa, Iowa City, Iowa 52242, U.S.A. SUMMARY Temperature-sensitive periods were determined by application of temperature shifts and shocks to 3 temperature-sensitive cell division arrest (cda) mutants of Tetrahymena thermophila. A restrictive temperature, 36 °C, was found at which all 3 mutants are fully penetrant, yet other physiological effects are minimal. At this temperature, the temperature-sensitive period of cdaCl is a unique 5-min period in mid-division, that of cdaAi is a similarly brief period situated about 0-5 h prior to cell division, while the temperature-sensitive period of cdaHi is 20 to 30 min long and immediately precedes cell division. These periods either coincide with (cdaCi, cdaHi) or immediately precede (cdaAi) the onset of phenotypic abnormality at the restrictive temperature. Brief exposure to 36 °C during the temperature-sensitive period in any of these mutants brings about irreversible arrest of division furrows in progress or preparation. Mutant cells suffering such arrest can, however, divide again at a permissive temperature by forming new furrows at different sites. INTRODUCTION One major advantage of studying temperature-sensitive mutations affecting developmental processes is that such mutations invite the use of temperature treat- ments to find out the time at which gene products exert their phenotypic effects. Changes in temperature are used to demarcate a temperature-sensitive period (TSP) by 2 primary operations: shifts from restrictive to permissive temperature to delineate its beginning, and shifts from permissive to restrictive temperature to identify its end (Esposito, Esposito, Arnaud & Halvorson, 1970; Suzuki, 1970). A double-shift from permissive to restrictive temperature and then back again (i.e. a shock) may also be used to pinpoint TSPs (Poodry, Hall & Suzuki, 1973). Various combinations of these operations have been applied to characterize TSPs for expression of lethality, male sterility, and organ-specific defects in Drosophila (A. Frankel, 1973; Martin, Martin & Shearn, 1977; Shellenbarger & Mohler, 1978) as well as TSPs of mutants affecting starvation-mediated developmental sequences in the microorganisms Bacillus subtilis (Szulmajster, Bonamy & Laporte, 1970; Leighton, 1974; Young, • Author to whom reprint request should be sent. t Present address: Room 16-720, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A. 5-2 60 J. Frankel, J. Mohler and A. K. Frankel 1976; Sumida-Yasumoto & Doi, 1977) and Saccharomyces cerevisiae (Esposito et al. 1970). With one recent exception (Melero, 1979), studies on the effects of temperature- sensitive (TS) mutations on the eukaryotic cell cycle have employed only shifts from permissive to restrictive temperature, and used these to characterize an 'execution point', defined as '.. .the time in the cell division cycle when the temperature- sensitive gene product completes its function at the permissive temperature' (Hart- well, 1971a) [also termed 'block point' (Howell & Naliboff, 1973); 'transition point' (Nurse, Thuriaux & Nasmyth, 1976) and 'shift-up point' (Ashihara, Chang & Baserga, 1978)].* This defines the end of the TSP. Execution points have been determined for a large number of TS cell division cycle mutants in Saccharomyces (Hartwell, Mortimer, Culotti & Culotti, 1973), Schizosaccharomyces (Nurse et al. 1976), Aspergillus (Orr & Rosenberger, 1976), and Chlamydomonas (Howell & Naliboff, 1973) and also for G1-arrest mutations in mammalian cell lines (Ashihara et al. 1978; Melero, 1979). TS mutations at 7 loci that bring about arrest at specific stages of cell division in the ciliate Tetrahymena thermophila (formerly T. pyriformis syngen 1) have been characterized genetically (Frankel, Jenkins, Doerder & Nelsen, 19766; Jenkins, un- published) and phenotypically (Frankel, Jenkins & DeBault, 1976 a; Frankel, Nelsen & Jenkins, 1977; Cleffrnann & Frankel, 1978; Frankel, unpublished). At 3 of these loci, cdaA, cdaC and cdaH, mutant alleles are available that bring about 100% arrest within the first cycle after the shift to restrictive temperature, and are therefore well suited for analysis of TSPs. The present communication is an analysis of the TSPs of mutations at these 3 loci, and also includes a demonstration of the local irreversibility of effects incurred during these TSPs. MATERIALS AND METHODS Stocks and media All cells used in this study were of inbred strain B of Tetrahymena thermophila. The strain B was obtained from. Dr D. L. Nanney in 1972, when in its 18th generation of inbreeding. It was inbred a 19th time in our laboratory in 1975, and designated B-1975. A single wild type stock, of mating type II, was used. Four mutant stocks, homozygous for each of 3 TS cda (cell division arrest) genes, were employed. cdaAl (formerly moi") and cdaCz (formerly motf) were each represented by a single homozygous stock, IA-105 (mating type III) for the former and IA-123 (m.t. VII) for the latter. Two stocks homozygous for cdaHl were used: IA-150 (m.t. V) for analysis of silver-impregnated slides and furrowing times and IA-149 (m.t. II) for the remainder of the single-cell work. We will refer to stocks by the mutant alleles that they carry as homozygotes. The culture medium generally utilized contained 1 % proteose peptone plus o-i % Difco Bacto yeast extract (1 % PPY). • We will continue to use 'execution point' as a synonym for the end of the TSP. Of the alternative expressions, 'block point' invites confusion between the end of the TSP and the time of phenotypic expression, while 'transition point' creates a potential for confusion between the ends of gene-specific TSPs and the more general 'physiological transition point' (c.f. Frankel, Mohler & Frankel, 1980). Temperature-sensitive periods of Tetrahymena mutations 61 Single-cell procedures Fifty- to 150-ml batches of medium in 250-ml conical flasks or 500-ml Fernbach flasks were inoculated at roughly 10 cells/ml from a 2-day-old tube culture and preincubated at 25 °C without shaking or aeration for about 20 h, to attain a density of about 1000 cells per ml when experiments were begun. A small portion of this culture was poured out into a glass Petri plate, for selection of single cells. In most experiments, the drop-culture procedure of Lovlie (1963) was used. Single non-dividing cells were selected at random and deposited in small drops of culture medium on the surface of plastic Petri dishes (Falcon no. 1008 or 3005), 25 drops to a dish. The drops were covered with a thin layer of light paraffin oil (viscosity 125/135) and maintained at 25 ± 1 °C. These drop cultures were examined at io-min intervals under a dissecting microscope and the state of cells with respect to cell division was noted. Cell divisions completed in each interval were recorded. After all cells in a newly established culture dish had divided, the dish, containing individually cultured pairs of sister cells of known interfission ages, was transferred to a waterbath set at a temperature ranging from 36'0 to 400 °C, according to the experiment. The temperatures in the drops were recorded using a thermistor probe connected to a tele-thermometer (Yellow Springs, model 47). The equilibrium temperature in the drop-cultures, about 1 -o °C below the bath temperature, was reached within 5 min after transfer. In the shift-up experiments, the culture dishes were re- moved from the waterbath after 3 h at the high temperature and scored as to whether or not a second division had taken place. In the shock experiments, the culture dishes were kept at the restrictive temperature for only 20 min, and then returned to 25 CC. They were observed under the dissecting microscope immediately after removal from the high temperature bath, and at io-min intervals thereafter. Calculation of the generation time of each cell was based on the total time elapsed between the completion of one division and that of the next, accurate to within ± 5 min. A variant of the above procedure was employed in shift-down experiments. Dividing cells were selected and placed in individual micro-drops. The exact time of division of these cells was recorded, and the culture dish was transferred to the waterbath, set 1 °C above the desired restrictive temperature, immediately after the division of the last cell (and within 10 min of the division of the first). The cells were kept at the high temperature for 70 min or more, and then removed from the bath and observed at frequent intervals at 25 °C to find out whether or not the subsequent division was successfully completed. In most experiments, one dish with mutant cells was maintained continuously at 25 CC, as a control, while other dishes of the same culture were given concurrent shocks or shifts. In certain experiments, wild-type cells were studied simultaneously with mutants in a 2x2 experimental design (wild type and mutant, each at 25 and 36 °C). In the culture-dish experiments, all cells were observed during the 2-3 min preceding the shift to high temperature, and, where possible, were classified according to visible stages related to cell division. The process of division furrowing (cytokinesis) was arbitrarily categorized into 5 stages, and one stage just prior to cytokinesis (B) could also be recognized. The B stage is characterized by a semi-rectangular (or 'boxy') shape, the E stage by a 'notch' on one side, the MB stage by a complete furrow less than one-third of the cell diameter deep, the M stage by a furrow one- to two-thirds of the cell diameter deep, the ML stage by a furrow more than two-thirds of the cell diameter deep but with a distinct waist still present, and the L stage by a figure-eight appearance with a waist of no distinguishable thickness as observed at 40 x magnification.
Recommended publications
  • In Tetrahymena Thermophila Jacek Gaertig,* Manuel A
    Acetylation of Lysine 40 in ot-tubulin Is Not Essential in Tetrahymena thermophila Jacek Gaertig,* Manuel A. Cruz, Josephine Bowen, Long Gu, David G. Pennock,* and Martin A. Gorovsky Department of Biology, University of Rochester, Rochester, New York 14627; and *Department of Zoology, Miami University, Oxford, Ohio 45056 Abstract. In Tetrahymena, at least 17 distinct microtu- acetylated tubulin was detectable in these transform- bule structures are assembled from a single primary se- ants using a monoclonal antibody specific for acety- quence type of oL- and 13-tubulin heterodimer, preclud- lated lysine 40. Surprisingly, mutants lacking detectable ing distinctions among microtubular systems based on acetylated tubulin are indistinguishable from wild-type tubulin primary sequence isotypes. Tetrahymena tubu- cells. Thus, acetylation of o~-tubulin at lysine 40 is non- lins also are modified by several types of posttransla- essential in Tetrahymena. In addition, isoelectric focus- tional reactions including acetylation of a-tubulin at ing gel analysis of axonemal tubulin from cells unable lysine 40, a modification found in most eukaryotes. In to acetylate o~-tubulin leads us to conclude that: (a) Tetrahyrnena, axonemal o~-tubulin and numerous other most or all ciliary ot-tubulin is acetylated, (b) other microtubules are acetylated. We completely replaced lysines cannot be acetylated to compensate for loss of the single type of a-tubulin gene in the macronucleus acetylation at lysine 40, and (c) acetylated o~-tubulin with a version encoding arginine instead of lysine 40 molecules in wild-type cells contain one or more addi- and therefore cannot be acetylated at this position. No tional charge-altering modifications.
    [Show full text]
  • Genetics of Polyketide Metabolism in Aspergillus Nidulans
    Metabolites 2012, 2, 100-133; doi:10.3390/metabo2010100 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Review Genetics of Polyketide Metabolism in Aspergillus nidulans Marie L. Klejnstrup 1, Rasmus J. N. Frandsen 2, Dorte K. Holm 2, Morten T. Nielsen 2, Uffe H. Mortensen 2, Thomas O. Larsen 1 and Jakob B. Nielsen 2,* 1 Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B221, DK-2800 Kgs. Lyngby, Denmark; E-Mails: [email protected] (M.L.K.); [email protected] (T.O.L) 2 Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B223, DK-2800 Kgs. Lyngby, Denmark; E-Mails: [email protected] (R.J.N.F.); [email protected] (D.K.H.); [email protected] (M.T.N.); [email protected] (U.H.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +45-4525-2657; Fax: +45-4588-4148. Received: 1 November 2011; in revised form: 23 December 2011 / Accepted: 17 January 2012 / Published: 30 January 2012 Abstract: Secondary metabolites are small molecules that show large structural diversity and a broad range of bioactivities. Some metabolites are attractive as drugs or pigments while others act as harmful mycotoxins. Filamentous fungi have the capacity to produce a wide array of secondary metabolites including polyketides. The majority of genes required for production of these metabolites are mostly organized in gene clusters, which often are silent or barely expressed under laboratory conditions, making discovery and analysis difficult.
    [Show full text]
  • Neutrophil Phagocyte Oxidase Activity Controls Invasive Fungal Growth and Inflammation in Zebrafish Taylor J
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs236539. doi:10.1242/jcs.236539 RESEARCH ARTICLE Special Issue: Cell Biology of the Immune System Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish Taylor J. Schoen1,2, Emily E. Rosowski1,*, Benjamin P. Knox1, David Bennin1, Nancy P. Keller1,3 and Anna Huttenlocher1,4,‡ ABSTRACT aspergillosis is increased in people with inherited Neutrophils are primary phagocytes of the innate immune system that immunodeficiency or medically-induced immunosuppression that generate reactive oxygen species (ROS) and mediate host defense. impairs innate immune cell function, especially those with Deficient phagocyte NADPH oxidase (PHOX) function leads to neutropenia, i.e. neutrophil deficiency (King et al., 2016; Segal chronic granulomatous disease (CGD) that is characterized by et al., 2010). Relative to other inherited immune disorders, CGD is invasive infections, including those by the generally non-pathogenic the most significant predisposing condition for developing invasive fungus Aspergillus nidulans. The role of neutrophil ROS in this aspergillosis (Blumental et al., 2011), and invasive aspergillosis is specific host–pathogen interaction remains unclear. Here, we exploit responsible for many of the infection-related mortalities of CGD the optical transparency of zebrafish to image the effects of neutrophil patients (Henriet et al., 2012; Marciano et al., 2015), with ROS on invasive fungal growth and neutrophil behavior in response to A. fumigatus as the primary causative agent (Marciano et al., Aspergillus nidulans. In a wild-type host, A. nidulans germinates 2015). Despite its rare occurrence in other immunocompromised rapidly and elicits a robust inflammatory response with efficient fungal populations, A.
    [Show full text]
  • FGN 46 Aspergillus Bibliography
    Fungal Genetics Reports Volume 46 Article 16 FGN 46 Aspergillus Bibliography John Clutterbuck Follow this and additional works at: https://newprairiepress.org/fgr This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. Recommended Citation Clutterbuck, J. (1999) "FGN 46 Aspergillus Bibliography," Fungal Genetics Reports: Vol. 46, Article 16. https://doi.org/10.4148/1941-4765.1244 This Bibliography is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. FGN 46 Aspergillus Bibliography Abstract This bibliography attempts to cover genetical and biochemical publications on Aspergillus nidulans and also includes selected references to related species and topics. This bibliography is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol46/iss1/16 Clutterbuck: FGN 46 Aspergillus Bibliography FGN 46 Aspergillus Bibliography This bibliography attempts to cover genetical and biochemical publications on Aspergillus nidulans and also includes selected references to related species and topics. I would be grateful for publication lists and reprints , especially for papers in books and less readily available periodicals. Entries have been checked as far as possible, but please tell me of any errors. Authors are requested to send a copy of each publication to the FGSC. John Clutterbuck View the Aspergillus Keyword index View the Aspergillus Author index 1. Aleksenko, A. & Ivanova, L. 1998 In vivo linearization and autonomous replication of plasmids containing human telomeric DNA in Aspergillus nidulans. Mol. Gen. Genet. 260: 159- 164 2.
    [Show full text]
  • Functional Characterization of Aspergillus Nidulans Homologues of Saccharomyces Cerevisiae Spa2 and Bud6
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department June 2006 Functional Characterization of Aspergillus nidulans Homologues of Saccharomyces cerevisiae Spa2 and Bud6 Aleksandra Virag University of Nebraska-Lincoln, [email protected] Steven D. Harris University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Virag, Aleksandra and Harris, Steven D., "Functional Characterization of Aspergillus nidulans Homologues of Saccharomyces cerevisiae Spa2 and Bud6" (2006). Papers in Plant Pathology. 48. https://digitalcommons.unl.edu/plantpathpapers/48 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EUKARYOTIC CELL, June 2006, p. 881–895 Vol. 5, No. 6 1535-9778/06/$08.00ϩ0 doi:10.1128/EC.00036-06 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Functional Characterization of Aspergillus nidulans Homologues of Saccharomyces cerevisiae Spa2 and Bud6 Aleksandra Virag and Steven D. Harris* Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska Received 6 February 2006/Accepted 12 April 2006 The importance of polarized growth for fungi has elicited significant effort directed at better understanding underlying mechanisms of polarization, with a focus on yeast systems. At sites of tip growth, multiple protein complexes assemble and coordinate to ensure that incoming building material reaches the appropriate destination sites, and polarized growth is maintained.
    [Show full text]
  • Aspergillus Bibliography
    Fungal Genetics Reports Volume 52 Article 8 Aspergillus Bibliography John Clutterbuck University of Glasgow Follow this and additional works at: https://newprairiepress.org/fgr This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. Recommended Citation Clutterbuck, J. (2005) "Aspergillus Bibliography," Fungal Genetics Reports: Vol. 52, Article 8. https://doi.org/10.4148/1941-4765.1127 This Bibliography is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Aspergillus Bibliography Abstract This bibliography attempts to cover genetical and biochemical publications on Aspergillus nidulans and also includes selected references to related species and topics. Entries have been checked as far as possible, but please tell me of any errors and omissions. Authors are kindly requested to send a copy of each article to the FGSC for its reprint collection. This bibliography is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol52/iss1/8 Clutterbuck: Aspergillus Bibliography ASPERGILLUS BIBLIOGRAPHY This bibliography attempts to cover genetical and biochemical publications on Aspergillus nidulans and also includes selected references to related species and topics. Entries have been checked as far as possible, but please tell me of any errors and omissions. Authors are kindly requested to send a copy of each article to the FGSC for its reprint collection. John Clutterbuck. Institute of Biomedical and Life Sciences, Anderson College, University of Glasgow, Glasgow G11 6NU, Scotland, UK. Email: [email protected] 1.
    [Show full text]
  • RNA Silencing in Aspergillus Nidulans Is Independent of RNA-Dependent RNA Polymerases
    Copyright © 2005 by the Genetics Society of America DOI: 10.1534/genetics.104.035964 RNA Silencing in Aspergillus nidulans Is Independent of RNA-Dependent RNA Polymerases T. M. Hammond and N. P. Keller1 Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706 Manuscript received September 4, 2004 Accepted for publication November 5, 2004 ABSTRACT The versatility of RNA-dependent RNA polymerases (RDRPs) in eukaryotic gene silencing is perhaps best illustrated in the kingdom Fungi. Biochemical and genetic studies of Schizosaccharomyces pombe and Neurospora crassa show that these types of enzymes are involved in a number of fundamental gene-silencing processes, including heterochromatin regulation and RNA silencing in S. pombe and meiotic silencing and RNA silencing in N. crassa. Here we show that Aspergillus nidulans, another model fungus, does not require an RDRP for inverted repeat transgene (IRT)-induced RNA silencing. However, RDRP requirements may vary within the Aspergillus genus as genomic analysis indicates that A. nidulans, but not A. fumigatus or A. oryzae, has lost a QDE-1 ortholog, an RDRP associated with RNA silencing in N. crassa. We also provide evidence suggesting that 5Ј → 3Ј transitive RNA silencing is not a significant aspect of A. nidulans IRT- RNA silencing. These results indicate a lack of conserved kingdom-wide requirements for RDRPs in fungal RNA silencing. NA silencing refers to a group of very similar post- ases (RDRPs) are essential components of RNA silenc- R transcriptional gene-silencing mechanisms that ing (e.g., protists, nematodes; Smardon et al. 2000; Sijen have been discovered in a diverse range of eukaryotes et al.
    [Show full text]
  • Aspergillus Fumigatus Establishes Infection in Zebrafish by Germination of Phagocytized Conidia, While Aspergillus Niger Relies
    www.nature.com/scientificreports OPEN Aspergillus fumigatus establishes infection in zebrafsh by germination of phagocytized Received: 19 May 2017 Accepted: 22 August 2019 conidia, while Aspergillus niger Published: xx xx xxxx relies on extracellular germination Bjørn E. V. Koch , Natalia H. Hajdamowicz, Ellen Lagendijk, Arthur F. J. Ram & Annemarie H. Meijer Among opportunistically pathogenic flamentous fungi of the Aspergillus genus, Aspergillus fumigatus stands out as a drastically more prevalent cause of infection than others. Utilizing the zebrafsh embryo model, we applied a combination of non-invasive real-time imaging and genetic approaches to compare the infectious development of A. fumigatus with that of the less pathogenic A. niger. We found that both species evoke similar immune cell migratory responses, but A. fumigatus is more efciently phagocytized than A. niger. Though efciently phagocytized, A. fumigatus conidia retains the ability to germinate and form hyphae from inside macrophages leading to serious infection even at relatively low infectious burdens. By contrast, A. niger appears to rely on extracellular germination, and rapid hyphal growth to establish infection. Despite these diferences in the mechanism of infection between the species, galactofuranose mutant strains of both A. fumigatus and A. niger display attenuated pathogenesis. However, defciency in this cell wall component has a stronger impact on A. niger, which is dependent on rapid extracellular hyphal growth. In conclusion, we uncover diferences in the interaction of the two fungal species with innate immune cells, noticeable from very early stages of infection, which drive a divergence in their route to establishing infections. The Aspergillus genus comprises over 200 species of filamentous fungi.
    [Show full text]
  • The 2008 Update of the Aspergillus Nidulans Genome Annotation: a Community Effort
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Center for Plant Science Innovation Plant Science Innovation, Center for 2009 The 2008 Update of the Aspergillus nidulans Genome Annotation: A Community Effort Jennifer Russo Wortman Department of Medicine Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA Steven D. Harris University of Nebraska-Lincoln, [email protected] Geoffrey Turner University of Sheffield, Sheffield, UK, [email protected] Aspergillus nidulans consortium Follow this and additional works at: https://digitalcommons.unl.edu/plantscifacpub Part of the Plant Sciences Commons Russo Wortman, Jennifer; Harris, Steven D.; Turner, Geoffrey; and consortium, Aspergillus nidulans, "The 2008 Update of the Aspergillus nidulans Genome Annotation: A Community Effort" (2009). Faculty Publications from the Center for Plant Science Innovation. 33. https://digitalcommons.unl.edu/plantscifacpub/33 This Article is brought to you for free and open access by the Plant Science Innovation, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Center for Plant Science Innovation by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Fungal Genetics and Biology 46 (2009) S2–S13 Contents lists available at ScienceDirect Fungal Genetics and Biology journal homepage: www.elsevier.com/locate/yfgbi The 2008 update of the Aspergillus nidulans genome annotation: A community effort Jennifer Russo Wortman a, Jane Mabey Gilsenan b, Vinita Joardar c, Jennifer Deegan d, John Clutterbuck e, Mikael R. Andersen f, David Archer g, Mojca Bencina h, Gerhard Braus i, Pedro Coutinho j, Hans von Döhren k, John Doonan l, Arnold J.M.
    [Show full text]
  • Evolution of Asexual and Sexual Reproduction in the Aspergilli
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 91: 37–59 (2018). Evolution of asexual and sexual reproduction in the aspergilli M. Ojeda-Lopez1†, W. Chen2†, C.E. Eagle3†, G. Gutierrez1, W.L. Jia2, S.S. Swilaiman3, Z. Huang2, H.-S. Park4, J.-H. Yu5, D. Canovas1*, and P.S. Dyer3* 1Department of Genetics, Faculty of Biology, University of Seville, 41012 Sevilla, Spain; 2College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China; 3School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; 4School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, Republic of Korea; 5Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA *Correspondence: P. S. Dyer, [email protected];D.Canovas, [email protected] † Authors contributed equally to the work. Abstract: Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG, NsdD, MedA, and some velvet proteins), suggesting similar developmental roles.
    [Show full text]
  • Regulation of Phialide Morphogenesis in <I>Aspergillus Nidulans</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of Winter 12-17-2014 Regulation of Phialide Morphogenesis in Aspergillus nidulans Hu Yin University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscidiss Part of the Bioinformatics Commons, and the Molecular Biology Commons Yin, Hu, "Regulation of Phialide Morphogenesis in Aspergillus nidulans" (2014). Dissertations and Theses in Biological Sciences. 74. http://digitalcommons.unl.edu/bioscidiss/74 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Regulation of Phialide Morphogenesis in Aspergillus nidulans by Hu Yin A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences Under the Supervision of Professor Steven D. Harris Lincoln, Nebraska December, 2014 Regulation of Phialide Morphogenesis in Aspergillus nidulans Hu Yin, Ph.D. University of Nebraska, 2014 Advisor: Steven D. Harris Filamentous fungi have two distinctive life cycles, vegetative growth and development for sexual or asexual spore formation. The asexual reproduction in development as conidiation in A. nidulans is the dominant form of producing spores effectively. A complex conidiophore structure is developed during asexual reproduction process. The conidiophore is formed from hyphal cell and consists of stalk, vesicle, metulae, phialide and conidial spores.
    [Show full text]
  • Aspergillus Nidulans
    Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Light is required for conidiation in Aspergillus nidulans Jeffrey L. Mooney and Lawrence N. Yager Department of Biology, Temple University, Philadelphia, Pennsylvania 19122 USA Light is necessary for asexual sporulation in Aspergillus nidulans but will elicit conidiation only if irradiation occurs during a critical period of development. We show that conidiation is induced by red light and suppressed by an immediate shift to far red light. Conidiation-specific gene functions switch from light-independent to light-dependent activities coincident with the expression of brlA, a regulator of conidiophore development. We also show that light dependence is abolished by a mutation in the velvet gene, which allows conidiation to occur in the absence of light. We propose that the initiation of late gene expression is regulated by velvet and controlled by a red light photoreceptor, whose properties are reminiscent of phytochrome-mediated responses observed in higher plants. [Key Words: Aspergillus nidulans; photoinduced development; conidiation; phytochrome] Received April 18, 1990; revised version accepted June 18, 1990. Conidiation (asexual sporulation) in the filamentous reminiscent of the phytochrome-mediated responses ob- ascomycete Aspergillus nidulans involves the forma- served in plants. tion of multicellular differentiated structures, called conidiophores, which produce pigmented, haploid co- nidia at precisely scheduled times (Axelrod 1972). The Results extrinsic environmental conditions required for initi- Light-dependent conidiation is determined by the ating sporulation in this organism are poorly under- allelic state of the veA gene stood. It has been shown previously that conidiation is strongly inhibited in submerged culture but occurs The original Glasgow wild-type isolate of A.
    [Show full text]