The Ampakine CX546 Restores the Prepulse Inhibition and Latent Inhibition Deficits in Mglur5-Deficient Mice

Total Page:16

File Type:pdf, Size:1020Kb

The Ampakine CX546 Restores the Prepulse Inhibition and Latent Inhibition Deficits in Mglur5-Deficient Mice Neuropsychopharmacology (2007) 32, 745–756 & 2007 Nature Publishing Group All rights reserved 0893-133X/07 $30.00 www.neuropsychopharmacology.org The Ampakine CX546 Restores the Prepulse Inhibition and Latent Inhibition Deficits in mGluR5-Deficient Mice ,1 1 1,2 Tatiana Lipina* , Karin Weiss and John Roder 1Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; 2Program in Neuroscience, University of Toronto, Toronto, ON, Canada In order to test the possible role of mGluR5 signaling in the behavioral endophenotypes of schizophrenia and other psychiatric disorders, +/+ À/À we used genetic engineering to create mice carrying null mutations in this gene. Compared to their mGluR5 littermates, mGluR5 mice have disrupted latent inhibition (LI) as measured in a thirst-motivated conditioned emotional response procedure. Administration of the positive modulator of a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPAR), CX546, during the conditioning phase only, improved the disrupted LI in mGluR5 knockout mice and facilitated LI in control C57BL/6J mice, given extended number of À/À conditioning trails (four conditioning stimulus–unconditioned stimulus). Prepulse inhibition (PPI) was impaired in mGluR5 mice to a F À/À level that could not be disrupted further by the antagonist of N-methyl-D-aspartate receptors MK-801. PPI deficit of mGluR5 mice was effectively reversed by CX546, whereas aniracetam had a less pronounced effect. These data provide evidence that a potent positive AMPAR modulator can elicit antipsychotic action and represents a new approach for treatment of schizophrenia. Neuropsychopharmacology (2007) 32, 745–756. doi:10.1038/sj.npp.1301191; published online 23 August 2006 Keywords: mGluR5 knockout mice; PPI; latent inhibition; MK-801; CX546; aniracetam INTRODUCTION schizophrenics. Compounds that enhance the activity of the NMDAR, including glycine, D-serine, the partial coagonist In recent years, theories focusing on glutamatergic dysfunc- D-cycloserine, and glycine transporter type 1 inhibitors, tion in the etiology of schizophrenia have received much reverse NMDAR antagonist-induced behavioral effects in support (Olney et al, 1999; Goff and Coyle, 2001). humans and rodents (Javitt et al, 1999; Lipina et al, 2005). Glutamatergic mechanisms underlying schizophrenia are Metabotropic glutamate receptors (mGluR) add to the of special interest given their critical role in the modulation complexity of glutamatergic neurotransmission in the brain. of cognition, mood, and motor function, which are In the context of NMDAR-mediated neurotransmission, the impaired in schizophrenics (Paul and Skolnick, 2003). mGluR5 subtype of mGluRs is of special interest. The Historically, it was found that pharmacological blockade mGluR5 binds through G-dependent or independent path- of N-methyl-D-aspartate receptor (NMDAR) induced psy- ways (Heuss et al, 1999) with predominantly couple via Gq chotic states in healthy human volunteers and exacerbated to phospholipase C. This yields diacylglycerol, which existing symptomatology in schizophrenics (Javitt and activates protein kinase C (PKC), and inositol-1,4,5-tripho- Zukin, 1991). This observation has led to the hypothesis 2+ sphate, which releases intracellular Ca (Conn and Pin, that NMDAR hypofunction may be critically involved in the 1997), and this in turn can increase NMDAR-evoked etiology and/or underlying symptoms of schizophrenia responses in a variety of neuronal tissues (Doherty et al, (Olney et al, 1999). Hence, facilitation of the NMDAR may 1997; Awad et al, 2000), indicating one potential functional represent an effective therapeutic strategy for normalization link between mGluR5 and NMDAR. Indeed, administration of NMDAR function in schizophrenia. Indeed, it was shown of mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyradine that coagonists of the NMDAR acting at the glycine-binding (MPEP) facilitated in vivo effects of NMDAR antagonists in site have antipsychotic efficacy in animal models and in rodents, producing anxiolytic (Spooren et al, 2000), neuroprotective (Bruno et al, 2000), and anticonvulsant *Correspondence: Dr T Lipina, Samuel Lunenfeld Research Institute, (Chapman et al, 2000) effects, disrupting prepulse inhibi- Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5, Tel: + 1 416 586 8242, Fax: + 1 416 586 8588, tion (PPI) (Kinney et al, 2003) and enhancing the E-mail: [email protected] detrimental effects of MK-801 on cognition and stereotypy Received 2 June 2006; revised 7 June 2006; accepted 7 July 2006 (Homayoun et al, 2004). This demonstrates that mGluR5 Online publication: 20 July 2006 at http://www.acnp.org/citations/ play a major role in regulating NMDAR-dependent func- Npp072006060079/default.pdf tion. Therefore, modulation of mGluR5 may be an effective CX546 recovers schizophrenic phenotypes T Lipina et al 746 therapeutic strategy for manipulation of NMDAR-mediated correlate with the level of negative symptoms in schizo- neurotransmission in schizophrenia (Goff and Coyle, 2001). phrenics (Cohen et al, 2004) and was found in NMDAR There is also evidence, indicating a role for mGluR5 itself in antagonists-treated rodents (Gaisler-Salomon and Weiner, the psychopathology of schizophrenia. For example, the 2003; Lipina et al, 2005). The administration of mGluR5 increased neuronal mGluR5 mRNA has been found in antagonistFMPEP to rats disrupted LI based on condi- cortical pyramidal cell layers of schizophrenics (Ohnuma tioned taste aversion (Bills et al, 2005). In addition, et al, 1998). More importantly, linkage analysis revealed cognitive deficits relevant to schizophrenia were observed that mGluR5 has been mapped to 11q14, closely to a after MPEP treatment of rats in the spontaneous alteration translocation that segregates with schizophrenia and related test of working memory (Homayoun et al, 2004), which is psychosis in a large Scottish family (Devon et al, 2001). The among the most commonly observed cognitive impairments creation of the mGluR5 null mutant (mGluR5À/À) (Jia et al, in schizophrenia patients (Goldman-Rakic, 1994). 1998) in our lab, offered a unique possibility to investigate If mGluR5 modulates the functional state of the NMDAR, how the absence of mGluR5 can modulate NMDAR- then the absence of mGluR5 in null mutant mice could dependent schizophrenia-related processes in vivo, with cause dysfunction of NMDAR. Indeed, using electrophysio- potential discovery of new approaches for schizophrenia logical measurements, we found that CA1 neurons from treatments in human. mGluR5À/À mice showed a complete loss of the NMDAR- Animal models of schizophrenia represent an important mediated component of long-term potentiation (LTPNMDA), preclinical tool for testing novel pharmacological com- but an unchanged LTP of AMPAR-mediated component pounds in the treatment of schizophrenia. PPI and latent (LTPAMPA) (Jia et al, 1998). We hypothesized here that inhibition (LI) are two important behavioral models in membrane depolarization via AMPAR facilitation could neuropharmacological research of schizophrenia with face, activate NMDAR complex as there is a link between these predictive, and construct validity (Geyer and Ellenbroek, two receptors (Hanley and Henley, 2005) and overcome 2003). PPI is a measure of sensorimotor gating and refers to behavioral deficits of mGluR5À/À animals. AMPAR are the attenuation of the startle response by a weak stimulus heteromeric complexes composed of four subunits (GluR1, (prepulse) appearing a short time before the startle GluR2, GluR3, and GluR4), each of which has a binding stimulus. Deficits in PPI have been reported in schizo- pocket for the transmitter glutamate and can be expressed phrenia (Swerdlow et al, 1994; Braff et al, 2001), in patients as flip or flop splice variant, which is regulated regionally with Huntington’s disease (Swerdlow et al, 1995), Tourett’s (Black, 2005). Several distinct classes of AMPAR modulators syndrome (Castellanos et al, 1996), and obsessive-compul- have been reported (Kew and Kemp, 2005) such as sive disorder (Swerdlow and Geyer, 1993). The mGluR5À/À aniracetam (1-(4-methoxybenzoyl)-2-pyrrolidinone com- mice exhibited robust PPI deficits found in different pound); benzamide compoundsF‘ampakines’ (CX516, laboratories (Henry et al, 1999; Brody et al, 2004a, b; CX546, and CX614); benzothiadiazides and related IDRA Kinney et al, 2003) using mice on three different back- and PEPA compounds, and group of biarypropylsulfona- ground strains, based on procedures with different stimuli mides (LY392098, LY404187, LY395153, LY503430). Positive modalities and startle magnitudes. However, the observed AMPAR modulators do not bind to the glutamate binding PPI deficit in mGluR5À/À mice was resistant to the site, but they interact with the receptor at an allosteric site antipsychotics (Brody et al, 2004b), suggesting that these and augment function by decreasing desensitization and/or mice cannot serve as a model with predictive validity to test deactivation. Such compounds have been shown to facilitate for typical/atypical antipsychotic drug effects and may AMPAR-mediated synaptic activity both in vitro and in vivo model some other psychiatric disorder (Brody et al, 2004b). and to stimulate memory-dependent processes in animals Here, we investigated LI as another distinctive assay for (Black, 2005) and are currently under development for schizophrenic-like endophenotypes in mGluR5À/À mice. LI treatment of cognitive dysfunction in various neuropsy-
Recommended publications
  • Effects of Chronic Systemic Low-Impact Ampakine Treatment On
    Biomedicine & Pharmacotherapy 105 (2018) 540–544 Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy journal homepage: www.elsevier.com/locate/biopha Effects of chronic systemic low-impact ampakine treatment on neurotrophin T expression in rat brain ⁎ Daniel P. Radin , Steven Johnson, Richard Purcell, Arnold S. Lippa RespireRx Pharmaceuticals, Inc., 126 Valley Road, Glen Rock, NJ, 07452, United States ARTICLE INFO ABSTRACT Keywords: Neurotrophin dysregulation has been implicated in a large number of neurodegenerative and neuropsychiatric Ampakine diseases. Unfortunately, neurotrophins cannot cross the blood brain barrier thus, novel means of up regulating BDNF their expression are greatly needed. It has been demonstrated previously that neurotrophins are up regulated in Cognitive enhancement response to increases in brain activity. Therefore, molecules that act as cognitive enhancers may provide a LTP clinical means of up regulating neurotrophin expression. Ampakines are a class of molecules that act as positive Neurotrophin allosteric modulators of AMPA-type glutamate receptors. Currently, they are being developed to prevent opioid- NGF induced respiratory depression without sacrificing the analgesic properties of the opioids. In addition, these molecules increase neuronal activity and have been shown to restore age-related deficits in LTP in aged rats. In the current study, we examined whether two different ampakines could increase levels of BDNF and NGF at doses that are active in behavioral measures of cognition. Results demonstrate that ampakines CX516 and CX691 induce differential increases in neurotrophins across several brain regions. Notable increases in NGF were ob- served in the dentate gyrus and piriform cortex while notable BDNF increases were observed in basolateral and lateral nuclei of the amygdala.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Architecture Moléculaire Des Récepteurs NMDA : Arrangement Tétramérique Et Interfaces Entre Sous-Unités Morgane Riou
    Architecture moléculaire des récepteurs NMDA : Arrangement tétramérique et interfaces entre sous-unités Morgane Riou To cite this version: Morgane Riou. Architecture moléculaire des récepteurs NMDA : Arrangement tétramérique et inter- faces entre sous-unités. Neurosciences [q-bio.NC]. Université Pierre et Marie Curie - Paris VI, 2014. Français. NNT : 2014PA066081. tel-01020863 HAL Id: tel-01020863 https://tel.archives-ouvertes.fr/tel-01020863 Submitted on 8 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT De l’Université Pierre et Marie Curie - Paris VI Ecole Doctorale Cerveau Cognition Comportement ARCHITECTURE MOLECULAIRE DES RECEPTEURS NMDA : ARRANGEMENT TETRAMERIQUE ET INTERFACES ENTRE SOUS-UNITES Présentée par : Morgane RIOU Institut de Biologie de l' Ecole Normale Supérieure (IBENS) CNRS UMR8197, INSERM U1024 Ecole Normale Supérieure, 46 rue d’Ulm, 75005 Paris Direction Générale de l' Armement Soutenue le 28 février 2014 devant le jury composé de : Pr. Germain TRUGNAN Président Dr. David PERRAIS Rapporteur Dr. Pierre
    [Show full text]
  • The Role of Diallyl Thiosulfinate Associated with Nuciferine And
    Cai_Stesura Seveso 27/03/18 09:29 Pagina 59 DOI: 10.4081/aiua.2018.1.59 ORIGINAL PAPER The role of diallyl thiosulfinate associated with nuciferine and diosgenin in the treatment of premature ejaculation: A pilot study Tommaso Cai 1, Andrea Cocci 2, Giamartino Cito 2, Bruno Giammusso 3, Alessandro Zucchi 4, Francesco Chiancone 5, Maurizio Carrino 5, Francesco Mastroeni 6, Francesco Comerci 7, Giorgio Franco 8, Alessandro Palmieri 9 1 Department of Urology, Santa Chiara Regional Hospital, Trento, Italy; 2 Department of Urology, University of Florence, Florence, Italy; 3 Department of Andrology, Policlinico Morgagni, Catania, Italy; 4 Department of Urology, University of Perugia, Perugia, Italy; 5 Department of Urology, Cardarelli Hospital, Naples, Italy; 6 Department of Urology, Azienda Ospedaliera Papardo, Messina, Italy 7 Urologist, Bologna, Italy; 8 Department of Urology, Sapienza University of Rome, Rome, Italy; 9 Department of Urology, University of Naples, Federico II, Naples, Italy. Summary Objective: To assess the efficacy and safety with prevalence rates of 20-30%, probably affecting of an association of diallyl thiosulfinate with every man at some point in his life (2, 3). It may result nuciferine and diosgenin in the treatment of a group of patients in unsatisfactory sexual intercourse for both partners, suffering from premature ejaculation (PE), primary or second- decreasing sexual self-confidence and self-esteem and ary to erectile dysfunction (ED). resulting in an overall reduction of quality of life (QoL) Materials and methods: From July 2015 to October 2016, 143 (4). Lifelong PE occurs within 30-60 seconds after vagi- patients (mean age 25.3; range 18-39) affected by PE complet- ed the study and were finally analyzed in this phase I study.
    [Show full text]
  • Oncolytic Properties of Ampakines in Vitro DANIEL P
    ANTICANCER RESEARCH 38 : 265-269 (2018) doi:10.21873/anticanres.12217 Oncolytic Properties of Ampakines In Vitro DANIEL P. RADIN, RICHARD PURCELL and ARNOLD S. LIPPA RespireRx Pharmaceuticals, Inc., Glen Rock, NJ, U.S.A. Abstract. Background/Aim: The 5-year survival rate of crucial for the consolidation of learning and memory (1, 2). glioblastoma (GBM) is ~10%, demonstrating that a new Over the past two decades, considerable strides have been therapeutic modality for this cancer is desperately needed. made in understanding AMPAR pharmacology, kinetics and Complicating the search for such a modality is that most large physiology by employing positive allosteric modulators molecules cannot pass through the blood brain barrier, so (PAMs) to delineate their function (3). For convenience, the molecules demonstrating efficacy in vitro may not be useful in term ampakines has been used to describe various classes of vivo because they never reach the brain. Recently, the selective drugs that act as PAM. serotonin reuptake inhibitor (SSRI) fluoxetine (FLX) was Ampakines are further categorized as Class I ampakines, identified as an effective agent in targeting GBM in vitro and also known as high-impact ampakines, and Class II in vivo by agonizing AMPA-glutamate receptors (AMPARs), ampakines, also known as low-impact ampakines (3). Class eliciting massive calcium influx and mitochondrial calcium I or high-impact ampakines increase AMPAR agonist overload and apoptosis. Materials and Methods: In the current binding affinity by stabilizing the channel open confirmation study, we used a colorimetric cell viability assay to determine of the AMPAR, thereby offsetting desensitization, and if we could enhance the oncolytic effect of FLX in vitro by pre- enhancing AMPAergic steady-state currents up to 100-fold treating cells with an AMPAR-positive allosteric modulator (4).
    [Show full text]
  • Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
    l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al.
    [Show full text]
  • Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?
    Pharmaceuticals 2014, 7, 29-45; doi:10.3390/ph7010029 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction? Lucas R. Watterson 1,* and M. Foster Olive 1,2 1 Department of Psychology, Behavioral Neuroscience Area, Arizona State University, Tempe, AZ 85287, USA 2 Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ 85287, USA * Author to whom correspondence should be addressed; E-Mail:[email protected]; Tel.: +1-480-965-2573. Received: 28 October 2013; in revised form: 13 December 2013 / Accepted: 24 December 2013 / Published: 30 December 2013 Abstract: Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.
    [Show full text]
  • Preferred Drug List 4-Tier
    Preferred Drug List 4-Tier 21NVHPN13628 Four-Tier Base Drug Benefit Guide Introduction As a member of a health plan that includes outpatient prescription drug coverage, you have access to a wide range of effective and affordable medications. The health plan utilizes a Preferred Drug List (PDL) (also known as a drug formulary) as a tool to guide providers to prescribe clinically sound yet cost-effective drugs. This list was established to give you access to the prescription drugs you need at a reasonable cost. Your out- of-pocket prescription cost is lower when you use preferred medications. Please refer to your Prescription Drug Benefit Rider or Evidence of Coverage for specific pharmacy benefit information. The PDL is a list of FDA-approved generic and brand name medications recommended for use by your health plan. The list is developed and maintained by a Pharmacy and Therapeutics (P&T) Committee comprised of actively practicing primary care and specialty physicians, pharmacists and other healthcare professionals. Patient needs, scientific data, drug effectiveness, availability of drug alternatives currently on the PDL and cost are all considerations in selecting "preferred" medications. Due to the number of drugs on the market and the continuous introduction of new drugs, the PDL is a dynamic and routinely updated document screened regularly to ensure that it remains a clinically sound tool for our providers. Reading the Drug Benefit Guide Benefits for Covered Drugs obtained at a Designated Plan Pharmacy are payable according to the applicable benefit tiers described below, subject to your obtaining any required Prior Authorization or meeting any applicable Step Therapy requirement.
    [Show full text]
  • Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors
    The Journal of Neuroscience, September 28, 2005 • 25(39):9027–9036 • 9027 Cellular/Molecular Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors Rongsheng Jin,1 Suzanne Clark,4 Autumn M. Weeks,4 Joshua T. Dudman,2 Eric Gouaux,1,3 and Kathryn M. Partin4 1Department of Biochemistry and Molecular Biophysics, 2Center for Neurobiology and Behavior, and 3Howard Hughes Medical Institute, Columbia University, New York, New York 10032, and 4Department of Biomedical Sciences, Division of Neuroscience, Colorado State University, Fort Collins, Colorado 80523 Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer’s disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1,3-oxazino benzo-1,4-dioxan-10- one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimer interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the poten- tiator binding site is adjacent to the “hinge” in the ligand-binding core “clamshell” that undergoes conformational rearrangement after glutamatebinding.Usingrapidsolutionexchange,patch-clampelectrophysiologyexperiments,weshowthatpointmutationsofresidues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.
    [Show full text]
  • Enhancement of Ampakine-Induced
    (19) & (11) EP 1 715 863 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/445 (2006.01) A61K 31/40 (2006.01) 09.05.2012 Bulletin 2012/19 A61K 31/4525 (2006.01) A61K 45/06 (2006.01) (21) Application number: 05712023.0 (86) International application number: PCT/US2005/002372 (22) Date of filing: 26.01.2005 (87) International publication number: WO 2005/072345 (11.08.2005 Gazette 2005/32) (54) ENHANCEMENT OF AMPAKINE-INDUCED FACILITATION OF SYNAPTIC RESPONSES BY CHOLINESTERASE INHIBITORS VERBESSERUNG DER DURCH AMPAKINE INDUZIERTEN ERLEICHTERUNG VON SYNAPTISCHEN REAKTIONEN DURCH CHOLINESTERASE-INHIBITOREN RENFORCEMENT DE LA FACILITATION INDUITE PAR AMPAKINE DES REPONSES SYNAPTIQUES PAR LES INHIBITEURS DE LA CHOLINESTERASE (84) Designated Contracting States: (74) Representative: Baldock, Sharon Claire AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Boult Wade Tennant HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR Verulam Gardens 70 Gray’s Inn Road (30) Priority: 26.01.2004 US 539422 P London WC1X 8BT (GB) (43) Date of publication of application: (56) References cited: 02.11.2006 Bulletin 2006/44 EP-A- 1 203 584 US-A- 5 747 492 US-B2- 6 689 795 (73) Proprietors: • CORTEX PHARMACEUTICALS, INC. • JOHNSON STEVEN A ET AL: "Randomized, Irvine, CA 92618 (US) double-blind, placebo-controlled international • The Regents of The University of California clinical trial of the Ampakine CX516 in elderly Oakland, CA 94607-5200 (US) participants with mild cognitive impairment.
    [Show full text]
  • Mechanisms of Addiction
    Mechanisms of Addiction Prof David Nutt, FMedSci Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London W12 0NN, UK. [email protected] www.tocris.com What is addiction? Although the term addiction is controversial because it can be stigmatizing and divisive, we use it here as a useful shorthand for the processes by which people become dependent on the use of drugs, or activities such as gambling, to the point where it distorts and even takes over their lives. The key feature of drug addiction is the inability to stop using the drug despite clear evidence of harm; the drug becomes progressively more important, dominating life at the expense of family, friends and work. Not all those who use drugs become addicted and factors that predispose to addiction include the class of drug, family history of addiction and propensity to withdrawal reactions and craving. Using drugs to deal with psychiatric problems is particularly likely to lead to addiction. Brain Circuits Associated with Addiction Classes of Addictive Drugs Products available from Tocris Stimulants Stimulants are drugs that act by releasing dopamine and, D Cocaine, (D)-Amphetamine sulfate, 3 Morphine, Mephedrone, in some cases, blocking its reuptake. This class includes Threo-methylphenidate D cocaine (and crack), amphetamine and its derivatives such 1,5 MAO as metamphetamine (crystal meth) and methylphenidate, + ATP (R)-(-)-Deprenyl, Moclobemide DA and some cathinones, such as mephedrone. Their actions DAT PFC AC are dependent on speed of brain penetration, with smoking cAMP PKA GBR 12909, Tetrabenazine, Reserpine, MAO VMAT and iv injection the most addictive routes, but are largely – (±)-MDMA CREB Dopamine D and D ACG unaffected by dopamine receptor antagonists.
    [Show full text]
  • Ampakine CX1942 Attenuates Opioid-Induced Respiratory Depression and Corrects the Hypoxaemic Effects of Etorphine in Immobilized Goats (Capra Hircus)
    Ampakine CX1942 attenuates opioid-induced respiratory depression and corrects the hypoxaemic effects of etorphine in immobilized goats (Capra hircus) Anna J Haw*, Leith CR Meyer*,†, John J Greer‡ & Andrea Fuller*,† * Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Parktown, South Africa †Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa ‡Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada Correspondence: Anna J Haw, Brain Function Research Group, Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa. E-mail: [email protected] Abstract Objectives: To determine whether CX1942 reverses respiratory depression in etorphine- immobilized goats, and to compare its effects with those of doxapram hydrochloride. Study design: A prospective, crossover experimental trial conducted at 1753 m.a.s.l. Animals: Eight adult female Boer goats (Capra hircus) with a mean ± standard deviation mass of 27.1 ± 1.6 kg. Methods: Following immobilization with 0.1 mg kg−1 etorphine, goats received one of doxapram, CX1942 or sterile water intravenously, in random order in three trials. Respiratory rate, ventilation and tidal volume were measured continuously. Arterial blood samples for the determination of PaO2, PaCO2, pH and SaO2 were taken 2 minutes before and then at 5 minute intervals after drug administration for 25 minutes. Results: Doxapram corrected etorphine-induced respiratory depression but also led to arousal and hyperventilation at 2 minutes after its administration, as indicated by the low −1 PaCO2 (27.8 ± 4.5 mmHg) and ventilation of 5.32 ± 5.24 L minute above pre-immobilization values.
    [Show full text]