The FOXL2 C134W Mutation Is Characteristic of Adult Granulosa Cell Tumors of the Ovary

Total Page:16

File Type:pdf, Size:1020Kb

The FOXL2 C134W Mutation Is Characteristic of Adult Granulosa Cell Tumors of the Ovary Modern Pathology (2010) 23, 1477–1485 & 2010 USCAP, Inc. All rights reserved 0893-3952/10 $32.00 1477 The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary Stacey Jamieson1,2, Ralf Butzow3,4, Noora Andersson3,6, Maria Alexiadis1, Leila Unkila-Kallio3,5, Markku Heikinheimo3,6, Peter J Fuller1,2 and Mikko Anttonen3,5 1Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia; 2Department of Medicine (MMC), Monash University, Clayton, Victoria, Australia; 3Women’s Health Research Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; 4Department of Pathology, University of Helsinki, Helsinki, Finland; 5Department of Obstetrics and Gynecology, University of Helsinki, Helsinki, Finland and 6Children’s Hospital, University of Helsinki, Helsinki, Finland Granulosa cell tumors of the ovary represent B5% of malignant ovarian cancers. It has recently been reported that 95–97% of adult granulosa cell tumors carry a unique somatic mutation in the FOXL2 gene. We undertook this study to verify the presence of the FOXL2 Cys134Trp mutation in two geographically independent cohorts of granulosa cell tumors and to examine the expression pattern of FOXL2 in these tumors. A total of 56 tumors with the histological diagnosis of adult granulosa cell tumor from two centers, Melbourne and Helsinki, were examined for the presence of the mutation using direct sequence analysis. Two granulosa cell tumor-derived cell lines, COV434 and KGN, three juvenile granulosa cell tumors and control tissues were also examined. The expression of the FOXL2 gene was determined using quantitative RT-PCR and/or immunohistochemistry. We found that 52 of the 56 adult granulosa cell tumors harbor the mutation, of which three were hemi/homozygous. Of the four cases with wild-type FOXL2 sequence, reappraisal suggests that three may have been misclassified at primary diagnosis. The KGN cells were heterozygous for the mutation, whereas the COV434 cells had a wild- type FOXL2 genotype. The expression levels of FOXL2 were similar across the adult granulosa cell tumors and the normal ovary controls; one mutation-negative granulosa cell tumor had high FOXL2 mRNA levels, whereas the COV434 cells and two of the three juvenile granulosa cell tumors lacked the expression of FOXL2. Our data provide confirmation of the frequent presence of the FOXL2 C134W mutation in adult granulosa cell tumors and demonstrate that the mutation is not associated with altered FOXL2 expression. The mutation analysis may be a useful tool to differentiate particularly between cell-rich diffuse granulosa cell tumors and mitotically active sex cord-stromal tumors. This unique FOXL2 mutation appears to be characteristic of adult granulosa cell tumors. Modern Pathology (2010) 23, 1477–1485; doi:10.1038/modpathol.2010.145; published online 6 August 2010 Keywords: FOXL2; granulosa cell tumor; ovarian cancer Granulosa cell tumors of the ovary represent B5% commonly presents during the perimenopausal or of malignant ovarian cancers.1,2 Two distinct sub- early postmenopausal period.3 Granulosa cell types have been described based on clinical pre- tumors are characterized by slow, indolent growth sentation and histological characteristics: the and a tendency to late recurrence, with intervals in juvenile and the adult form. The adult form excess of 10 or 20 years not being uncommon. accounts for 95% of granulosa cell tumors and most Although the prognosis is often favorable, those that recur and/or are at an advanced stage carry a poor prognosis with B80% of these patients succumbing Correspondence: Dr M Anttonen, MD, PhD, Women’s Health 3 Research Program and Department of Obstetrics and Gynecology, to their disease. Biomedicum 2U, University of Helsinki, PO Box 20, 00014 Although granulosa cell tumors seem to represent Helsinki, Finland, e-mail: [email protected] or Professor a relatively homogenous group of tumors, a mole- PJ Fuller, MBBS, PhD, FRACP, Prince Henry’s Institute of cular etiology has until recently eluded investiga- Medical Research, PO Box 5152, Clayton, VIC 3168, Australia, tors.4 The molecular changes that give rise to e-mail: [email protected] Received 15 April 2010; revised 13 May 2010; accepted 17 May granulosa cell tumors are likely to involve disruption 2010; published online 6 August 2010 of pathways that function during normal ovarian www.modernpathology.org FOXL2 in adult granulosa cell tumors 1478 S Jamieson et al development to regulate granulosa cell proliferation. PCR conditions used to amplify FOXL2 were those Indeed, granulosa cell tumors exhibit a gene expres- of Shah et al,8 using a VeritiTM 96-well Thermal sion profile consistent with that of normal prolifer- Cycler (Applied Biosystems, Foster City, CA, USA). ating granulosa cells of preantral follicles.5–7 A range In all cases, an amplicon of the predicted size of these genes, as well as genes commonly mutated (182 bp) when compared with the molecular weight in human malignancy, have been examined for standards was obtained. The PCR products were mutations and/or altered expression in granulosa purified using a QIAquick Gel Extraction Kit cell tumors without success.4 This situation abruptly (Qiagen, Hilden, Germany). For each sample, for- changed in 2009 with the report of a somatic ward and reverse sequences were determined mutation in the FOXL2 gene (C402G; Cys134Trp) using the primers described above as sequencing that was present in 97% of adult granulosa cell primers and a BigDyes Terminator Cycle Sequen- tumors.8 The mutation was found in only one cing Ready Reaction Kit, v3.1 (Applied Biosystems), juvenile granulosa cell tumor8 and not found in a according to the manufacturer’s protocol. The wide range of other tumors, both gonadal and analysis was carried out using ABI 3130xl Genetic non-gonadal.9,10 Curiously, diminished and/or loss Analyzer (Applied Biosystems) and assembled of FOXL2 expression has been reported in advanced using Sequencher 3.1.1 software. Sequencing was stage/aggressive juvenile granulosa cell tumors.11 performed by the Gandel Charitable Trust Sequen- In this study, we sought to confirm the presence cing Centre at the Monash Health Translation of this mutation in two geographically independent Precinct, Clayton. cohorts of granulosa cell tumors and to examine the expression pattern of the FOXL2 gene in Quantitative PCR analysis these tumors. Quantitative PCR was performed with the oligonu- cleotide primers described above using an Applied Materials and methods Biosystems 7900HT Fast Real-Time PCR System with all reactions performed in triplicate. Cycling Melbourne conditions comprised a 10 min initial denaturation step at 95 1C, then 40 cycles of denaturing (95 1C for Human tissue samples 30 s), annealing (55 1C for 30 s) and extension (72 1C Ovarian granulosa cell tumors and normal ovarian for 45 s). The b2-microglobulin (b2M) primers have tissue were obtained initially for a study of serum been described previously.15 Yields were converted inhibin levels in ovarian tumors12,13 and subse- to femtograms based on the standard curve for each quently for studies of the molecular pathogenesis PCR product, and the resultant mRNA levels were 5,14–19 of granulosa cell tumors. Normal ovarian tissue normalized to the b2M mRNA level per sample. The was obtained from premenopausal women who had data were calculated from the results of three undergone elective hysterectomy with oophorect- independent experiments. omy for a range of conditions not associated with ovarian malignancy (Supplementary Table 1). RNA from the tissue and the two granulosa cell tumor- Helsinki derived cell lines was extracted using the guanidine thiocyanate/cesium chloride method as described Human tissue samples previously.14 Tissue collection was approved by the The ethical committee of the Helsinki University research and ethics committee of the Monash Central Hospital and the National Supervisory Medical Centre, and all women gave written Authority for Welfare and Health in Finland informed consent before tissue collection. approved this study. A total of 37 adult granulosa cell tumor samples were collected in Helsinki Cell lines University Central Hospital between 1990 and The two human granulosa cell tumor-derived cell 2009 (Supplementary Table 2). Tissue samples were lines, COV434 and KGN, have been previously snap frozen in liquid nitrogen upon the initial described.20 COV434 cells were maintained in intraoperative diagnosis by a pathologist; the corre- DMEM and KGN cells in DMEM/F12 both supple- sponding paraffin-embedded tissue samples were mented with 10% FCS at 37 1C in a 95% air/5% CO2 utilized in immunostaining. The adult granulosa humidified incubator. cell tumor diagnosis was subsequently confirmed and tumor subtype, nuclear atypia rate and mitotic Mutation analysis index evaluated,7 before FOXL2 mutation analysis, Total RNA (1 mg) was reverse-transcribed for 60 min by an experienced pathologist (RB). Tissue samples at 50 1C in a total volume of 20 ml using SuperScript of three ovarian carcinomas (two endometrioid and III reverse transcriptase (Invitrogen, Carlsbad, CA, one serous) were analyzed for comparison. USA). First-strand synthesis was performed using 250 ng random hexamers. The oligonucleotide Mutation analysis primers (sense 50-CACAACCTCAACGAGTGC-30, DNA was extracted from frozen tissue samples with antisense 50-TTGCCGGGCTGGAAGTGCG-30) and a NucleoSpin Tissue kit (Machrey Nagel, Du¨ ren, Modern Pathology (2010) 23, 1477–1485 FOXL2 in adult granulosa cell tumors S Jamieson et al 1479 Germany) according to the manufacturer’s instruc- microscopy by two authors (NA and MAn) as to tions. The oligonucleotide PCR primers (forward the number of positive cells (nuclear positivity 50-CCAGTACATCATCGCGAAGTTCCCG-30, reverse for FOXL2) and intensity of staining: À negative, 50-CTCCGGCCCCGAAGAGCC-30) were those used þ /À weak, þ positive, and þþ highly positive. by Shah et al8 for direct sequencing. For PCR amplification, 50 ng of DNA sample was amplified with 10 pmol of each primer, and Biotools DNA Results polymerase and reaction mix (Biotools, B&M Labs, FOXL2 C143W Mutation Status Spain) in a final volume of 15 ml.
Recommended publications
  • Regulation of Sex Determination in Mice by a Non-Coding Genomic Region
    HIGHLIGHTED ARTICLE GENETICS OF SEX Regulation of Sex Determination in Mice by a Non-coding Genomic Region Valerie A. Arboleda,* Alice Fleming,* Hayk Barseghyan,* Emmanuèle Délot,*,† Janet S. Sinsheimer,*,‡ and Eric Vilain*,†,§,1 *Department of Human Genetics, †Department of Pediatrics, ‡Department of Biomathematics, and §Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7088 ABSTRACT To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis de- velopment within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Suppression of Notch Signaling Stimulates Progesterone Synthesis by Enhancing the Expression of NR5A2 and NR2F2 in Porcine Granulosa Cells
    G C A T T A C G G C A T genes Article Suppression of Notch Signaling Stimulates Progesterone Synthesis by Enhancing the Expression of NR5A2 and NR2F2 in Porcine Granulosa Cells Rihong Guo 1,2, Fang Chen 2 and Zhendan Shi 1,2,* 1 Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; [email protected] 2 Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 18 January 2020; Published: 22 January 2020 Abstract: The conserved Notch pathway is reported to be involved in progesterone synthesis and secretion; however, the exact effects remain controversial. To determine the role and potential mechanisms of the Notch signaling pathway in progesterone biosynthesis in porcine granulosa cells (pGCs), we first used a pharmacological γ-secretase inhibitor, N-(N-(3,5-difluorophenacetyl-l-alanyl))-S-phenylglycine t-butyl ester (DAPT), to block the Notch pathway in cultured pGCs and then evaluated the expression of genes in the progesterone biosynthesis pathway and key transcription factors (TFs) regulating steroidogenesis. We found that DAPT dose- and time-dependently increased progesterone secretion. The expression of steroidogenic proteins NPC1 and StAR and two TFs, NR5A2 and NR2F2, was significantly upregulated, while the expression of HSD3B was significantly downregulated. Furthermore, knockdown of both NR5A2 and NR2F2 with specific siRNAs blocked the upregulatory effects of DAPT on progesterone secretion and reversed the effects of DAPT on the expression of NPC1, StAR, and HSD3B.
    [Show full text]
  • Journal.Pbio.2005886 August 10, 2018 1 / 47 Muscle Clock Directs Diurnal Metabolism
    RESEARCH ARTICLE Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock Kenneth Allen Dyar1,2*, MichaeÈl Jean Hubert1, Ashfaq Ali Mir1, Stefano Ciciliot2, Dominik Lutter1, Franziska Greulich1, Fabiana Quagliarini1, Maximilian Kleinert1, Katrin Fischer1, Thomas Oliver Eichmann3, Lauren Emily Wright4, Marcia Ivonne Peña Paz2, Alberto Casarin5, Vanessa Pertegato5, Vanina Romanello2, Mattia Albiero2, Sara Mazzucco6, Rosario Rizzuto4, Leonardo Salviati5, Gianni Biolo6, Bert Blaauw2,4, a1111111111 Stefano Schiaffino2, N. Henriette Uhlenhaut1,7* a1111111111 1 Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), Institute for a1111111111 Diabetes and Obesity (IDO), Munich, Germany, 2 Venetian Institute of Molecular Medicine (VIMM), Padova, a1111111111 Italy, 3 Institute of Molecular Biosciences, University of Graz, Graz, Austria, 4 Department of Biomedical a1111111111 Sciences, University of Padova, Padova, Italy, 5 Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy, 6 Clinica Medica, Department of Medical Sciences, University of Trieste, Trieste, Italy, 7 Gene Center, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany * [email protected] (KAD); [email protected] (NHU) OPEN ACCESS Citation: Dyar KA, Hubert MJ, Mir AA, Ciciliot S, Lutter D, Greulich F, et al. (2018) Transcriptional programming of lipid and amino acid metabolism Abstract by the skeletal
    [Show full text]
  • Epigenetic Services Citations
    Active Motif Epigenetic Services Publications The papers below contain data generated by Active Motif’s Epigenetic Services team. To learn more about our services, please give us a call or visit us at www.activemotif.com/services. Technique Target Journal Year Reference Justin C. Boucher et al. CD28 Costimulatory Domain- ATAC-Seq, Cancer Immunol. Targeted Mutations Enhance Chimeric Antigen Receptor — 2021 RNA-Seq Res. T-cell Function. Cancer Immunol. Res. doi: 10.1158/2326- 6066.CIR-20-0253. Satvik Mareedu et al. Sarcolipin haploinsufficiency Am. J. Physiol. prevents dystrophic cardiomyopathy in mdx mice. RNA-Seq — Heart Circ. 2021 Am J Physiol Heart Circ Physiol. doi: 10.1152/ Physiol. ajpheart.00601.2020. Gabi Schutzius et al. BET bromodomain inhibitors regulate Nature Chemical ChIP-Seq BRD4 2021 keratinocyte plasticity. Nat. Chem. Biol. doi: 10.1038/ Biology s41589-020-00716-z. Siyun Wang et al. cMET promotes metastasis and ChIP-qPCR FOXO3 J. Cell Physiol. 2021 epithelial-mesenchymal transition in colorectal carcinoma by repressing RKIP. J. Cell Physiol. doi: 10.1002/jcp.30142. Sonia Iyer et al. Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of ATAC-Seq — Cancer Discovery 2021 Combination Immunotherapy. Cancer Discov. doi: doi: 10.1158/2159-8290 Vinod Krishna et al. Integration of the Transcriptome and Genome-Wide Landscape of BRD2 and BRD4 Binding BRD2, BRD4, RNA Motifs Identifies Key Superenhancer Genes and Reveals ChIP-Seq J. Immunol. 2021 Pol II the Mechanism of Bet Inhibitor Action in Rheumatoid Arthritis Synovial Fibroblasts. J. Immunol. doi: doi: 10.4049/ jimmunol.2000286. Daniel Haag et al.
    [Show full text]
  • Supplementary File 1
    Supplementary Materials Figure S1. RNA sequencing quality control report. The upper panel showed per base sequence quality of (a) miRNA from 786-O and ACHN, and (b) RNA from 786-O and ACHN; the lower panel showed the per sequence quality scores of (c) miRNA from 786-O and ACHN, and (d) RNA from 786-O and ACHN. The quality score from 15 to 99 bp fell into the green background, indicating good quality calls. The majority read > 35 indicated good sequencing quality. Table S1. The list of miRNA with significant changes (ACHN vs 786-O) #miRNA Fold Change #miRNA Fold Change #miRNA Fold Change hsa-let-7a-2-3p -490.00 hsa-miR-192-5p 21.37 hsa-miR-323a-3p 135.76 hsa-let-7c-3p -10.30 hsa-miR-194-3p 31.18 hsa-miR-323b-3p 53.75 hsa-miR-100-3p -26.39 hsa-miR-194-5p 21.87 hsa-miR-326 -16.46 hsa-miR-100-5p -63.93 hsa-miR-195-5p 8.31 hsa-miR-329-3p 101.81 hsa-miR-105-5p -288.00 hsa-miR-196a-3p 5.28 hsa-miR-329-5p 436 hsa-miR-1185-1-3p 32.08 hsa-miR-199b-5p -9.75 hsa-miR-335-3p 73.67 hsa-miR-1185-2-3p 37.22 hsa-miR-203a-3p 222.25 hsa-miR-335-5p 71.58 hsa-miR-1185-5p 91.13 hsa-miR-205-5p -5.12 hsa-miR-337-3p 1696 hsa-miR-1197 7.38 hsa-miR-20b-5p 5.28 hsa-miR-337-5p 12141 hsa-miR-125b-1-3p -301.58 hsa-miR-211-5p 118 hsa-miR-34b-3p 1110.62 hsa-miR-125b-2-3p 5.91 hsa-miR-215-5p 18.88 hsa-miR-34b-5p 796.38 hsa-miR-1262 16.28 hsa-miR-218-5p 14.37 hsa-miR-34c-3p 10751 hsa-miR-1266-5p 6.62 hsa-miR-224-5p 118 hsa-miR-34c-5p 836.81 hsa-miR-127-3p 1723.39 hsa-miR-2277-3p 6.65 hsa-miR-3614-5p 141 hsa-miR-127-5p 4334.00 hsa-miR-2682-3p 6.63 hsa-miR-3617-5p -140 hsa-miR-1271-5p
    [Show full text]
  • Hes1 in the Somatic Cells of the Murine Ovary Is Necessary for Oocyte Survival and Maturation
    Developmental Biology 375 (2013) 140–151 Contents lists available at SciVerse ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Hes1 in the somatic cells of the murine ovary is necessary for oocyte survival and maturation Iris Manosalva a,b,n, Aitor Gonza´lez a,b,1, Ryoichiro Kageyama a,b,n a Institute for Virus Research, Kyoto University, Kyoto, Japan b Japan Science and Technology Agency, CREST, Kyoto, Japan article info abstract Article history: The Notch pathway plays an important role in ovary development in invertebrates like Drosophila. Received 25 February 2012 However its role for the mammalian ovary is unclear. Mammalian Hes genes encode transcriptional Received in revised form factors that mediate many of the activities of the Notch pathway. Here, we have studied the function of 18 December 2012 Hes1 during embryonic development of the mouse ovary. We find that Hes1 protein is present in Accepted 19 December 2012 somatic cells and oocyte cytoplasm and decreases between E15.5 and P0. Conventional Hes1 knock-out Available online 27 December 2012 (KO), Hes1 conditional KO in the ovarian somatic, and chemical inhibition of Notch signaling decrease Keywords: the total number, size and maturation of oocytes and increase the number of pregranulosa cells at P0. Mouse These defects correlate with abnormal proliferation and enhanced apoptosis. Expression of the Ovary proapoptotic gene Inhbb is increased, while the levels of the antiapoptotic and oocyte maturation Notch pathway marker Kit are decreased in the Hes1 KO ovaries. Conversely, overactivation of the Notch pathway Hes1 Oocytes in ovarian somatic cells increases the number of mature oocytes and decreases the number of Fertility pregranulosa cells.
    [Show full text]
  • Supplement. Transcriptional Factors (TF), Protein Name and Their Description Or Function
    Supplement. Transcriptional factors (TF), protein name and their description or function. TF Protein name TF description/function ARID3A AT rich interactive domain 3A (BRIGHT-like) This gene encodes a member of the ARID (AT-rich interaction domain) family of DNA binding proteins. ATF4 Activating Transcription Factor 4 Transcriptional activator. Binds the cAMP response element (CRE) (consensus: 5-GTGACGT[AC][AG]-3), a sequence present in many viral and cellular promoters. CTCF CCCTC-Binding Factor Chromatin binding factor that binds to DNA sequence specific sites. Involved in transcriptional regulation by binding to chromatin insulators and preventing interaction between promoter and nearby enhancers and silencers. The protein can bind a histone acetyltransferase (HAT)-containing complex and function as a transcriptional activator or bind a histone deacetylase (HDAC)-containing complex and function as a transcriptional repressor. E2F1-6 E2F transcription factors 1-6 The protein encoded by this gene is a member of the E2F family of transcription factors. The E2F family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of the transforming proteins of small DNA tumor viruses. The E2F proteins contain several evolutionally conserved domains found in most members of the family. These domains include a DNA binding domain, a dimerization domain which determines interaction with the differentiation regulated transcription factor proteins (DP), a transactivation domain enriched in acidic amino acids, and a tumor suppressor protein association domain which is embedded within the transactivation domain. EBF1 Transcription factor COE1 EBF1 has been shown to interact with ZNF423 and CREB binding proteins.
    [Show full text]
  • Integrated Single-Nucleotide and Structural Variation Signatures Of
    bioRxiv preprint doi: https://doi.org/10.1101/267500; this version posted February 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Integrated single-nucleotide and structural variation sig- natures of DNA-repair deficient human cancers Tyler Funnell1, Allen Zhang1, Yu-Jia Shiah2, Diljot Grewal1, Robert Lesurf2, Steven McKinney1, Ali Bashashati1, Yi Kan Wang1, Paul C. Boutros2, Sohrab P. Shah1;3 1Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada 2Informatics & Biocomputing, Ontario Institute for Cancer Research, Toronto, Canada 3Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada Correspondence and requests for materials should be addressed to S.P.S. (email: [email protected]) Keywords: mutation signatures, structural variants, single nucleotide variants, cancer genome, ovarian cancer, breast cancer, statistical model, correlated topic models 1 bioRxiv preprint doi: https://doi.org/10.1101/267500; this version posted February 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Mutation signatures in cancer genomes reflect endogenous and exogenous mutational pro- cesses, offering insights into tumour etiology, features for prognostic and biologic stratifica- tion and vulnerabilities to be exploited therapeutically. We present a novel machine learning formalism for improved signature inference, based on multi-modal correlated topic models (MMCTM) which can at once infer signatures from both single nucleotide and structural variation counts derived from cancer genome sequencing data.
    [Show full text]
  • Alternative Splicing and Thermosensitive Expression of Dmrt1 During Urogenital Development in the Painted Turtle, Chrysemys Picta
    Alternative splicing and thermosensitive expression of Dmrt1 during urogenital development in the painted turtle, Chrysemys picta Beatriz Mizoguchi and Nicole Valenzuela Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America ABSTRACT Background. The doublesex and mab-3 related transcription factor 1 (Dmrt1) is a highly conserved gene across numerous vertebrates and invertebrates in sequence and function. Small aminoacid changes in Dmrt1 are associated with turnovers in sex determination in reptiles. Dmrt1 is upregulated in males during gonadal development in many species, including the painted turtle, Chrysemys picta, a reptile with temperature- dependent sex determination (TSD). Dmrt1 is reported to play different roles during sex determination and differentiation, yet whether these functions are controlled by distinct Dmrt1 spliceoforms remains unclear. While Dmrt1 isoforms have been characterized in various vertebrates, no study has investigated their existence in any turtle. Methods. We examine the painted turtle to identify novel Dmrt1 isoforms that may be present during urogenital development using PCR, profile their expression by RNA-seq across five embryonic stages at male- and female-producing temperatures, and validate their expression pattern via qPCR with transcript-specific fluorescent probes. Results. A novel Dmrt1 spliceoform was discovered for the first time in chelonians, lacking exons 2 and 3 (Dmrt1 1Ex2Ex3). Dmrt1 canonical and 1Ex2Ex3 transcripts were differentialy expressed by temperature at stages 19 and 22 in developing gonads of painted turtles, after the onset of sex determination, and displayed a significant male- Submitted 9 April 2019 biased expression pattern. This transcriptional pattern differs from studies in other Accepted 27 January 2020 turtles and vertebrates that reported Dmrt1 differential expression before or at the onset Published 19 March 2020 of sex determination.
    [Show full text]
  • Circadian Proteins and Reproduction: an Update
    Asian Journal of Biological and Life Sciences Review Article Circadian proteins and reproduction: An update Kumari Nishi1, Swarndeep Singh Hundal2*, Vinoth Prasanna Gunasekaran3 1, 2 Department of Zoology, Punjab Agricultural University, Ludhiana, Punjab-141004, India 3 Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu - 620 024, India. E-mail : [email protected], [email protected], [email protected] Contact No : +91 98722 74244 Submitted : 19.02.2013 Accepted :27.04.2013 Published : 31.08.2013 Abstract Endogenous circadian rhythms play an important role in effective functioning of complex organisms to enhance their survival. The master clock or suprachiasmatic nucleus in the ventral hypothalamus helps synchronize all independent peripheral clocks for temporal regulation of all physiological activities. The important clock proteins are Circadian Locomotor Output Cycle Kaput (CLOCK), Brain-Muscle-Arnt-Like protein 1 (BMAL1), Cryptochrome (CRY) and Period (PER). These proteins have a role in reproduction and functioning of gonads. The expression of these proteins is controlled by a histone deacetylase Sirtuin1 (SIRT1). The presence, role and functioning of these compounds in the reproductive tissues is discussed. INTRODUCTION Cryptochrome(Cry1, Cry2), Period (Per1, Per2, Per3), Clock homologue (mouse) (Clock; Circadian Locomotor Output Cycle urvival of an organism depends on two factors i.e. food Kaput), and Aryl hydrocarbon Receptor Nuclear Translocator- Savailability and its reproductive ability. For effective [7-9]. reproduction, the organism should respond to the environmental like (Arntl) cues appropriately. Animals inhabiting outside the tropics, adapt These proteins include Circadian Locomotor Output Cycle to seasonal changes in environment by altering their physiology Kaput (CLOCK) and Brain-Muscle-Arnt-Like protein 1 and behavior including reproduction, migration, hibernation, (BMAL1).
    [Show full text]
  • Primary Sex Determination in Birds Depends on DMRT1 Dosage, but Gonadal Sex Does Not Determine Adult Secondary Sex Characteristics
    Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics Jason Ioannidisa,1,2, Gunes Taylorb,1, Debiao Zhaoa, Long Liuc, Alewo Idoko-Akoha, Daoqing Gongc, Robin Lovell-Badgeb, Silvana Guiolib,3, Mike J. McGrewa,2,3, and Michael Clintona,3 aDivision of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom; bLaboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom; and cCollege of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, People’s Republic of China Edited by Scott V. Edwards, Harvard University, Cambridge, MA, and approved January 11, 2021 (received for review October 12, 2020) In birds, males are the homogametic sex (ZZ) and females the override genetic sex determination (GSD) in marsupial neonates heterogametic sex (ZW). Primary sex determination is thought to (7). In chickens, blocking E2 synthesis in female embryos leads to depend on a sex chromosome gene dosage mechanism, and the masculinization of the gonads while the addition of E2 to male most likely sex determinant is the Z chromosome gene Doublesex embryos leads to feminization of the gonads (8–10). and Mab-3–Related Transcription factor 1 (DMRT1). To clarify this In birds, the male is the homogametic sex (ZZ), and the fe- issue, we used a CRISPR-Cas9–based monoallelic targeting ap- male is the heterogametic sex (ZW), but, as yet, there is no ev- proach and sterile surrogate hosts to generate birds with targeted idence for an ovary-determining gene located on the female- mutations in the DMRT1 gene.
    [Show full text]