A Survey of Microarchitectural Timing Attacks and Countermeasures on Contemporary Hardware Qian Ge1, Yuval Yarom2, David Cock1,3, and Gernot Heiser1 1Data61, CSIRO and UNSW, Australia, qian.ge,
[email protected] 2Data61, CSIRO and the University of Adelaide, Australia,
[email protected] 3Present address: Systems Group, Department of Computer Science, ETH Zurich,¨
[email protected] Abstract Microarchitectural timing channels expose hidden hardware state though timing. We survey recent attacks that exploit microarchitectural features in shared hardware, especially as they are relevant for cloud computing. We classify types of attacks according to a taxonomy of the shared resources leveraged for such attacks. Moreover, we take a detailed look at attacks used against shared caches. We survey existing countermeasures. We finally discuss trends in the attacks, challenges to combating them, and future directions, especially with respect to hardware support. 1 Introduction Computers are increasingly handling sensitive data (banking, voting), while at the same time we consolidate more services, sensitive or not, on a single hardware platform. This trend is driven both by cost savings and convenience. The most visible example is the cloud computing—infrastructure-as-a-service (IaaS) cloud computing supports multiple virtual machines (VM) on a hardware platform managed by a virtual machine monitor (VMM) or hypervisor. These co-resident VMs are mutually distrusting: high-performance computing software may run alongside a data centre for financial markets, requiring the platform to ensure confidentiality and integrity of VMs. The cloud computing platform also has availability requirements: service providers have service-level agreements (SLAs) which specify availability targets, and malicious VMs being able to deny service to a co-resident VM could be costly to the service provider.