Providing Web Applications with Safe and Flexible Access to Local Devices

Total Page:16

File Type:pdf, Size:1020Kb

Providing Web Applications with Safe and Flexible Access to Local Devices Maverick: Providing Web Applications with Safe and Flexible Access to Local Devices David W. Richardson and Steven D. Gribble Department of Computer Science & Engineering University of Washington Abstract printers, scanners, smartphones, and GPS trackers are in- creasingly pervasive, yet browsers currently provide little Web browsers do not yet provide Web programs with support to Web applications for accessing them. The sup- the same safe, convenient access to local devices that port that does exist is limited to a handful of HTML tags operating systems provide to native programs. As a re- for accessing a small number of common device classes, sult, Web programmers must either wait for the slowly such as Webcams or microphones. evolving HTML standard to add support for the device Today, Web programmers that want to use unsup- classes they want to use, or they must use difficult to de- ported or exotic local devices must either wait for HTML ploy browser plug-ins to add the access they need. standards to evolve to include them, or they must im- This paper describes Maverick, a browser that pro- plement, deploy, and support browser plug-ins that users vides Web applications with safe and flexible access to may be reluctant to install. Such poor choices limit the local devices. Maverick lets Web programmers imple- functionality of Web applications and discourage the de- ment USB device drivers and frameworks, like file sys- velopment and adoption of new, interesting local devices. tems or streaming video layers, using standard Web pro- gramming technologies such as HTML, JavaScript, or In this paper, we describe Maverick, an experimen- even code executed in a native client sandbox. These Web tal browser that gives Web applications safe and flexible drivers and Web frameworks are downloaded dynami- access to local USB devices. Maverick takes the aggres- cally from Web servers and executed by browsers along- sive approach of removing the responsibility for manag- side Web applications. Maverick provides Web drivers ing devices and device frameworks from the host oper- with protected access to the USB bus, and it provides Web ating system and empowering the browser to execute de- drivers and frameworks with event-driven IPC channels vice drivers and frameworks alongside Web applications. to communicate with each other and with Web applica- Specifically, instead of requiring users to install USB de- tions. vice drivers into their host OS, Maverick dynamically finds, downloads, and executes Web drivers that are writ- We prototyped Maverick by modifying the Chrome ten with standard Web programming technologies like Web browser and the Linux kernel. Using Maverick, we HTML, JavaScript, or Native Client (NaCl) [24], and that have implemented: several Web drivers, including a USB directly communicate with the USB devices they drive. mass storage driver and a Webcam driver; several Web frameworks, including a FAT16 filesystem and a stream- Similarly, instead of relying on device frameworks ing video framework; and, several Web applications that within the host OS, such as file systems or video frame- exercise them. Our experiments show that Web drivers, works, Maverick finds, downloads, and executes Web frameworks, and applications are practical, easy to au- frameworks to provide Web applications with convenient thor, and have sufficient performance, even when imple- high-level abstractions. Maverick permits Web appli- mented in JavaScript. cations to communicate directly with Web frameworks, which in turn communicate with Web drivers. Maverick’s approach has several advantages. Web de- 1 Introduction velopers can add support for new USB devices and make them immediately accessible to any Maverick user and Web browsers do not yet provide Web programs with the Web application without waiting for updates to slowly same safe, convenient access to local devices that OSs moving standards bodies, browser vendors, or operating provide to native programs. Digital devices like cameras, systems. Maverick also inherits many of the safety and security benefits of running drivers in user-level, such as we showcase several applications. After discussing re- insulating the OS from driver bugs. lated work in Section 6, we conclude. Maverick addresses three main challenges: 1. Security. Maverick must isolate Web drivers and 2 A Brief Overview of USB Web frameworks to prevent access to unauthorized devices or interference with unrelated Web appli- Maverick exposes USB devices to Web drivers and appli- cations and native software. Maverick uses exist- cations. We chose to focus on USB for two reasons; first, ing JavaScript and NaCl sandboxes to contain Web it has become the predominant interconnect for most drivers and frameworks. In addition, Maverick ex- consumer devices, making it an attractive target. Second, poses a virtualized USB bus to Web drivers, grant- since USB is message-oriented, it was relatively straight- ing each driver the ability to send and receive USB forward to expose USB message transmission and recep- messages only to the devices for which it is autho- tion to JavaScript and NaCl. In contrast, we believe it rized. So that Web drivers, frameworks, and appli- would be much less natural to expose complex device in- cations can interact flexibly and efficiently, Maverick terconnects, such as PCI, that use more architecturally- provides them with protected event-driven IPC chan- dependent features like DMA and memory-mapped I/O. nels. In this section, we provide a brief overview of USB device abstractions and protocols. Readers familiar with 2. Performance. Web drivers and frameworks must be USB may choose to skip to Section 3. efficient. We prototyped Maverick by modifying the Chrome browser and the Linux kernel, implemented several drivers and frameworks in both JavaScript 2.1 USB Devices and Communication and NaCl, and compared them to native Linux equiv- Channels alents. Not surprisingly, user-level drivers in gen- A USB bus connects a host, such as a laptop or desktop, eral, and JavaScript drivers and frameworks in partic- to multiple peripheral devices over a star topology. Some ular, are significantly slower than their Linux coun- USB devices consist of more than one logical device; for terparts. Nonetheless, our experiments demonstrate example, a Web camera might consist of a video camera they are fast enough to support many interesting USB and a microphone packaged together into a single physi- devices and applications. As well, we show that NaCl cal box. Each of these logical devices would appear as a can achieve performance closer to that of in-kernel separate addressable entity on the USB bus. drivers and frameworks. A logical device consists of one or more communica- 3. Usability. Maverick must avoid burdening users tion endpoints associated with some specific function of with making confusing and error-prone decisions on the logical device. A host establishes a pipe to an end- how to select trustworthy and compatible drivers and point to communicate with it. There is a one-to-one map- frameworks for Web applications. To do this, Mav- ping between pipes and endpoint. Each endpoint and its erick allows users to configure their browsers to trust corresponding pipe are typed. USB supports four kinds one or more Maverick domain providers. A domain of pipes: provider is a trusted third-party like Google or Mi- crosoft that is responsible for selecting and bundling • Control. A control pipe facilitates the bidirectional together a set of interoperable Web frameworks and exchange of small control messages used to query or drivers. control a device. The USB specification mandates that hosts must reserve 10% of the USB bus band- We have prototyped several Web drivers and frame- width for control traffic. All devices have at least one works and applications that exercise them, including: control endpoint. a USB mass storage driver, a Webcam driver, a FAT • Interrupt. An interrupt pipe is a unidirectional chan- filesystem framework, and a streaming video framework. nel used to convey messages from a device to a host. Overall, our experience with Maverick suggests that Web For example, USB keyboards generate interrupt mes- drivers and frameworks are straightforward to imple- sages when key press events occur. Interrupt mes- ment, and are safe and practical from a performance, se- sages are latency sensitive; hosts must poll interrupt curity, and usability standpoint. endpoints sufficiently frequently to ensure respon- The rest of this paper is structured as follows. In Sec- siveness. tion 2, we present a brief overview of USB. Section 3 describes the architecture of Maverick, and Section 4 • Isochronous. An isochronous pipe is a unidirec- presents our prototype implementation. In Section 5, we tional channel used to transfer a continuous stream evaluate the performance and security of Maverick and of data, such as video frames or audio packets. Hosts must schedule USB messages to provide a guaranteed Maverick World Desktop World amount of bandwidth to an established isochronous Web Drivers, pipe. Isochronous pipes may experience occasional Frameworks, Applications data loss. Desktop Applications • Bulk. Bulk pipes are unidirectional channels that pro- User Level Browser Kernel vide reliable data transfer but no bandwidth guaran- Device tees. USB bulk storage devices and printers often use Frameworks bulk pipes. Maverick USB USB Virtualizer (MUV) Device Drivers OS user USB world splitter 2.2 Host OS Abstractions and Duties input USB bus bandwidth is allocated and scheduled into time slices called frames. For high speed USB 2.0 devices, USB device USB device frames have a 125 micro-second interval, permitting Hardware up to 8,000 frames per second. The host operating system is responsible for scheduling USB packets into Figure 1: Maverick “World Splitting.” Maverick splits com- puters into the legacy desktop world and the Maverick web frames. Because USB mandates reserved bandwidth for world. USB devices are partitioned between the two worlds; isochronous pipes and responsiveness for interrupt pipes, each world runs its own drivers, frameworks, and applications.
Recommended publications
  • Linux Software User's Manual
    New Generation Systems (NGS) Linux Software User’s Manual Version 1.0, September 2019 www.moxa.com/product © 2019 Moxa Inc. All rights reserved. New Generation Systems (NGS) Linux Software User’s Manual The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement. Copyright Notice © 2019 Moxa Inc. All rights reserved. Trademarks The MOXA logo is a registered trademark of Moxa Inc. All other trademarks or registered marks in this manual belong to their respective manufacturers. Disclaimer Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa. Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time. Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication. Technical Support Contact Information www.moxa.com/support Moxa Americas Moxa China (Shanghai office) Toll-free: 1-888-669-2872 Toll-free: 800-820-5036 Tel: +1-714-528-6777 Tel: +86-21-5258-9955 Fax: +1-714-528-6778 Fax: +86-21-5258-5505 Moxa Europe Moxa Asia-Pacific Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230 Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231 Moxa India Tel: +91-80-4172-9088 Fax: +91-80-4132-1045 Table of Contents 1.
    [Show full text]
  • Man Pages Section 3 Library Interfaces and Headers
    man pages section 3: Library Interfaces and Headers Part No: 816–5173–16 September 2010 Copyright © 2010, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms setforth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
    [Show full text]
  • DA-681 Series Linux User's Manual V2
    DA-681 Series Linux User’s Manual Second Edition, May 2009 www.moxa.com/product © 2009 Moxa Inc. All rights reserved. Reproduction without permission is prohibited. DA-681 Series Linux User’s Manual The Moxa software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement. Copyright Notice Copyright © 2009 Moxa Inc. All rights reserved. Reproduction without permission is prohibited. Trademarks MOXA is a registered trademark of Moxa Inc. All other trademarks or registered marks in this manual belong to their respective manufacturers. Disclaimer Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa. Moxa provides this document “as is,” without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time. Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication. Technical Support Contact Information www.moxa.com/support Moxa
    [Show full text]
  • Training USB Linux Drivers: Writing USB-2.0 and USB-3.0 Host and Gadget Drivers on Linux - Operating Systems: Android
    Training USB Linux Drivers: Writing USB-2.0 and USB-3.0 host and gadget drivers on Linux - Operating Systems: Android D8 - USB Linux Drivers Writing USB-2.0 and USB-3.0 host and gadget drivers on Linux Objectives Learn to write Linux drivers for USB-2.0 and USB-3.0 Explore the Linux USB host-driver stack Learn the structure of USB device drivers Discover USB gagdet drivers (2.0 and 3.0) Understand the support for OTG-2.0 and OTG-3.0. Understand the specifics of the Linux kernel in the management of devices and drivers. Learn to configure the Linux kernel for optimal hotplug management. Understand how hotplug events are generated and how to use them in drivers. Install and use external hotplug daemons: udev, libusb, etc ... Discover Linux kernel changes up to the latest versions (up to 3.6.39 and 3.x). Master the techniques of kernel debugging. We use a recent linux kernel, as provided by the distribution used or available on www.kernel.org. Labs are conducted on target boards, that can be: Atmel ARM9-based boards, with Lauterbach JTAG probes. Labs are conducted using the System Workbench for Linux - Basic Edition IDE, for which all trainees will get a free license, so that they can continue to work, after the training, in a convenient and efficient environment. --> Course environment A PC workstation and a target board per two trainees group. Printed course material. Prerequisite Good practice of C programming on Linux Good knowledge of Linux kernel and driver programming (see our D3 - Linux Drivers course and D7 - Linux drivers hotplug and power management courses) Plan First day D8 - USB Linux Drivers 09/23/21 Reminders on kernel programming Reminders on kernel module development Kernel objects Exercice: Writing a kernel module creating and using kernel objects and sets The sysfs file system Exercice: Interacting with a kernel module through a kernel object and the sysfs file sytem Hotplug Hotplug in the kernel uevents Exercice: Writing a kernel module sending hotplug events to a user mode program.
    [Show full text]
  • Intel® Realsense™ SDK 2.0 Github User Guide
    Intel® RealSense™ SDK 2.0 Github User Guide May 2018 Revision 002 Document Number: 337595-002 You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with the system manufacturer or retailer or learn more at intel.com. Intel technologies may require enabled hardware, specific software, or services activation. Check with the system manufacturer or retailer. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. All information provided here is subject to change without notice. Contact the Intel representative to obtain the latest Intel product specifications and roadmaps. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548- 4725 or visit www.intel.com/design/literature.htm.
    [Show full text]
  • Linux Kernel and Driver Development Training Slides
    Linux Kernel and Driver Development Training Linux Kernel and Driver Development Training © Copyright 2004-2021, Bootlin. Creative Commons BY-SA 3.0 license. Latest update: October 9, 2021. Document updates and sources: https://bootlin.com/doc/training/linux-kernel Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering Send them to [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/470 Rights to copy © Copyright 2004-2021, Bootlin License: Creative Commons Attribution - Share Alike 3.0 https://creativecommons.org/licenses/by-sa/3.0/legalcode You are free: I to copy, distribute, display, and perform the work I to make derivative works I to make commercial use of the work Under the following conditions: I Attribution. You must give the original author credit. I Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. I For any reuse or distribution, you must make clear to others the license terms of this work. I Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. Document sources: https://github.com/bootlin/training-materials/ - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/470 Hyperlinks in the document There are many hyperlinks in the document I Regular hyperlinks: https://kernel.org/ I Kernel documentation links: dev-tools/kasan I Links to kernel source files and directories: drivers/input/ include/linux/fb.h I Links to the declarations, definitions and instances of kernel symbols (functions, types, data, structures): platform_get_irq() GFP_KERNEL struct file_operations - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/470 Company at a glance I Engineering company created in 2004, named ”Free Electrons” until Feb.
    [Show full text]
  • AVR32701: AVR32AP7 USB Performance
    AVR32701: AVR32AP7 USB Performance Features 32-bit • Linux USB bulk transfer performance ATSTK1000 (32-bit SDRAM bus width) Microcontrollers ATNGW100 (16-bit SDRAM bus width) GadgetFS driver and gadgetfs-test application USB performance measurement tool Application Note 1 Introduction This application note documents the USB bulk transfer performance of the ATSTK®1000 and ATNGW100 boards running a 2.6.22-amtel.3 Linux® kernel. The tests are based on the Linux USB gadget driver framework. Rev. 32069A-AVR32-01/08 2 Benchmarking tools 2.1 Host side On the host side a Linux application communicates with the USB driver over the libusb library. It scans all enumerated USB devices and searches for a matching vendor/product ID. If such devices are found it configures them, writes and reads a specified amount of data to and from the device and measures the time needed for the transfer. These measurements are used to document the USB bulk transfer performance. This tool is available with this application note. 2.2 Device side To avoid kernel programming, a user space interface is available, GadgetFS. This will transfer all requests not handled by the kernel to user space and thus allowing a developer easy access to the USB interface. To provide this user space API a special gadget driver is needed. This is the GadgetFS driver. After loading this gadget into the kernel it provides a file system for the developer that can be used to communicate with the USB system. 1. Load the GadgetFS driver > modprobe gadgetfs 2. Make a directory for the mountpoint > mkdir /dev/gadget 3.
    [Show full text]
  • Buildroot Vs Yocto: Differences for Your Daily Job
    Buildroot vs Yocto: Differences for Your Daily Job Luca Ceresoli — AIM Sportline [email protected] http://lucaceresoli.net ELC-E 2018 About me • Embedded Linux engineer at AIM Sportline http://www.aim-sportline.com/ • Develop products on custom hardware • Kernel, drivers, bootloader, FPGA • Integration, build system • Open source enthusiast • Contributor to Buildroot, the Linux kernel and a few other projects 1 Introduction • This is not a feature comparison, not a selection guide • If you need one: • Buildroot vs. OpenEmbedded/Yocto: A Four Hands Discussion, Belloni and Petazzoni, ELC 2016 (slides and video online) • http://www.jumpnowtek.com/linux/ Choosing-an-embedded-linux-build-system.html • https://opensource.com/article/18/6/embedded-linux-build-tools • Fact: both tools have pros and cons This is not… • This is not a tutorial 2 • If you need one: • Buildroot vs. OpenEmbedded/Yocto: A Four Hands Discussion, Belloni and Petazzoni, ELC 2016 (slides and video online) • http://www.jumpnowtek.com/linux/ Choosing-an-embedded-linux-build-system.html • https://opensource.com/article/18/6/embedded-linux-build-tools • Fact: both tools have pros and cons This is not… • This is not a tutorial • This is not a feature comparison, not a selection guide 2 • Fact: both tools have pros and cons This is not… • This is not a tutorial • This is not a feature comparison, not a selection guide • If you need one: • Buildroot vs. OpenEmbedded/Yocto: A Four Hands Discussion, Belloni and Petazzoni, ELC 2016 (slides and video online) • http://www.jumpnowtek.com/linux/ Choosing-an-embedded-linux-build-system.html • https://opensource.com/article/18/6/embedded-linux-build-tools 2 This is not… • This is not a tutorial • This is not a feature comparison, not a selection guide • If you need one: • Buildroot vs.
    [Show full text]
  • License Terms & Condition
    Date:7-June-2016 OSS Disclosure Document CM_CI1/EGM-P OSS Licenses used in GM-MY17 Project Page 1 1 Overview .................................................. 10 2 OSS Licenses used in the project .......................... 10 3 Package details for OSS Licenses usage .................... 11 3.1 7 Zip - LZMA SDK - 9.2/4.01 .................................. 11 3.2 ACL - 2.2.51 ................................................. 11 3.3 AES - Advanced Encryption Standard – 1.0 ..................... 11 3.4 Alsa Libraries - 1.0.27.2 .................................... 11 3.5 Alsa Plugins - 1.0.26 ........................................ 11 3.6 Alsa Utils - 1.0.27.2 ........................................ 12 3.7 APMD - 3.2.2 ................................................. 12 3.8 ATK - 2.8.0 .................................................. 12 3.9 Attr - 2.4.46 ................................................ 12 3.10 Audio File Library - 0.2.7 ................................. 12 3.11 Android - platform - bootable – recovery -4.2 .............. 12 3.12 Android - platform - system – core -4.2 .................... 12 3.13 Avahi - 0.6.31 ............................................. 13 3.14 Bash - 3.2.48 .............................................. 13 3.15 Bison with GPL 3.0 exception - 2.7.1 ....................... 13 3.16 Blktrace - 1.0.5 ........................................... 13 3.17 BlueZ - 4.101/5.15 ......................................... 13 3.18 Boost C++ Libraries- boost 1.50.0 .......................... 13 3.19 BPSTL .....................................................
    [Show full text]
  • R 3.1 Open Source Packages
    R 3.1 Open Source Packages Package Version Purpose accountsservice 0.6.15-2ubuntu9.3 query and manipulate user account information acpid 1:2.0.10-1ubuntu3 Advanced Configuration and Power Interface event daemon adduser 3.113ubuntu2 add and remove users and groups apport 2.0.1-0ubuntu12 automatically generate crash reports for debugging apport-symptoms 0.16 symptom scripts for apport apt 0.8.16~exp12ubuntu10.27 commandline package manager aptitude 0.6.6-1ubuntu1 Terminal-based package manager (terminal interface only) apt-utils 0.8.16~exp12ubuntu10.27 package managment related utility programs apt-xapian-index 0.44ubuntu5 maintenance and search tools for a Xapian index of Debian packages at 3.1.13-1ubuntu1 Delayed job execution and batch processing authbind 1.2.0build3 Allows non-root programs to bind() to low ports base-files 6.5ubuntu6.2 Debian base system miscellaneous files base-passwd 3.5.24 Debian base system master password and group files bash 4.2-2ubuntu2.6 GNU Bourne Again Shell bash-completion 1:1.3-1ubuntu8 programmable completion for the bash shell bc 1.06.95-2 The GNU bc arbitrary precision calculator language bind9-host 1:9.8.1.dfsg.P1-4ubuntu0.16 Version of 'host' bundled with BIND 9.X binutils 2.22-6ubuntu1.4 GNU assembler, linker and binary utilities bsdmainutils 8.2.3ubuntu1 collection of more utilities from FreeBSD bsdutils 1:2.20.1-1ubuntu3 collection of more utilities from FreeBSD busybox-initramfs 1:1.18.5-1ubuntu4 Standalone shell setup for initramfs busybox-static 1:1.18.5-1ubuntu4 Standalone rescue shell with tons of built-in utilities bzip2 1.0.6-1 High-quality block-sorting file compressor - utilities ca-certificates 20111211 Common CA certificates ca-certificates-java 20110912ubuntu6 Common CA certificates (JKS keystore) checkpolicy 2.1.0-1.1 SELinux policy compiler command-not-found 0.2.46ubuntu6 Suggest installation of packages in interactive bash sessions command-not-found-data 0.2.46ubuntu6 Set of data files for command-not-found.
    [Show full text]
  • Red Hat Enterprise Linux 7 7.8 Release Notes
    Red Hat Enterprise Linux 7 7.8 Release Notes Release Notes for Red Hat Enterprise Linux 7.8 Last Updated: 2021-03-02 Red Hat Enterprise Linux 7 7.8 Release Notes Release Notes for Red Hat Enterprise Linux 7.8 Legal Notice Copyright © 2021 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • User Space Approach to Audio Device Driving on UNIX-Like Systems
    Universitat Politecnica` de Catalunya Final year project User space approach to audio device driving on UNIX-like systems Author: Advisor: Robert Millan Hernandez Dr. J.R. Herrero Zaragoza January 17, 2015 Acknowledgements To my advisor, Dr. J.R. Herrero Zaragoza, for his teachings and guidance, for steering me in the right direction at each turning point, and overall for his generous support during development of this project. To Dr. Ferran Sabat´efor his supervision during the management course, his atten- tion to detail, his many corrections and improvements and his feedback on management aspects of the project. To Daniel Ruiz Mu~noz,for LATEX advice and allowing me to peek at some of his templates. 1 Abstract The proposed project attempts to resolve some of the inconvenience factors related to implementing device drivers in kernel space, by using a different approach. With the goals of simplifying development efforts and of maximizing perfor- mance, design decisions have been taken in the majority of UNIX-like operating systems to implement their kernels using a monolithic design and to build most device driver subsystems into them. This has a number of drawbacks which this proposal document will elaborate on. The proposed project will attempt to resolve these drawbacks by implementing a driver framework entirely in user space. The proposal is to do this specifically for sound devices because this appears to be a very suitable class of drivers for this kind of experiment. Abstract (Catalan) El projecte que proposem pret´enresoldre alguns dels inconvenients relacionats amb la implementaci´ode controladors de dispositiu en espai de kernel, tot emprant un m`etode diferent.
    [Show full text]