Navigation Education Lesson 8: Satellite Navigation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Navigation and the Global Positioning System (GPS): the Global Positioning System
Navigation and the Global Positioning System (GPS): The Global Positioning System: Few changes of great importance to economics and safety have had more immediate impact and less fanfare than GPS. • GPS has quietly changed everything about how we locate objects and people on the Earth. • GPS is (almost) the final step toward solving one of the great conundrums of human history. Where the heck are we, anyway? In the Beginning……. • To understand what GPS has meant to navigation it is necessary to go back to the beginning. • A quick look at a ‘precision’ map of the world in the 18th century tells one a lot about how accurate our navigation was. Tools of the Trade: • Navigations early tools could only crudely estimate location. • A Sextant (or equivalent) can measure the elevation of something above the horizon. This gives your Latitude. • The Compass could provide you with a measurement of your direction, which combined with distance could tell you Longitude. • For distance…well counting steps (or wheel rotations) was the thing. An Early Triumph: • Using just his feet and a shadow, Eratosthenes determined the diameter of the Earth. • In doing so, he used the last and most elusive of our navigational tools. Time Plenty of Weaknesses: The early tools had many levels of uncertainty that were cumulative in producing poor maps of the world. • Step or wheel rotation counting has an obvious built-in uncertainty. • The Sextant gives latitude, but also requires knowledge of the Earth’s radius to determine the distance between locations. • The compass relies on the assumption that the North Magnetic pole is coincident with North Rotational pole (it’s not!) and that it is a perfect dipole (nope…). -
Basic Principles of Celestial Navigation James A
Basic principles of celestial navigation James A. Van Allena) Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 ͑Received 16 January 2004; accepted 10 June 2004͒ Celestial navigation is a technique for determining one’s geographic position by the observation of identified stars, identified planets, the Sun, and the Moon. This subject has a multitude of refinements which, although valuable to a professional navigator, tend to obscure the basic principles. I describe these principles, give an analytical solution of the classical two-star-sight problem without any dependence on prior knowledge of position, and include several examples. Some approximations and simplifications are made in the interest of clarity. © 2004 American Association of Physics Teachers. ͓DOI: 10.1119/1.1778391͔ I. INTRODUCTION longitude ⌳ is between 0° and 360°, although often it is convenient to take the longitude westward of the prime me- Celestial navigation is a technique for determining one’s ridian to be between 0° and Ϫ180°. The longitude of P also geographic position by the observation of identified stars, can be specified by the plane angle in the equatorial plane identified planets, the Sun, and the Moon. Its basic principles whose vertex is at O with one radial line through the point at are a combination of rudimentary astronomical knowledge 1–3 which the meridian through P intersects the equatorial plane and spherical trigonometry. and the other radial line through the point G at which the Anyone who has been on a ship that is remote from any prime meridian intersects the equatorial plane ͑see Fig. -
Download/Pdf/Ps-Is-Qzss/Ps-Qzss-001.Pdf (Accessed on 15 June 2021)
remote sensing Article Design and Performance Analysis of BDS-3 Integrity Concept Cheng Liu 1, Yueling Cao 2, Gong Zhang 3, Weiguang Gao 1,*, Ying Chen 1, Jun Lu 1, Chonghua Liu 4, Haitao Zhao 4 and Fang Li 5 1 Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China; [email protected] (C.L.); [email protected] (Y.C.); [email protected] (J.L.) 2 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China; [email protected] 3 Institute of Telecommunication and Navigation, CAST, Beijing 100094, China; [email protected] 4 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China; [email protected] (C.L.); [email protected] (H.Z.) 5 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100094, China; [email protected] * Correspondence: [email protected] Abstract: Compared to the BeiDou regional navigation satellite system (BDS-2), the BeiDou global navigation satellite system (BDS-3) carried out a brand new integrity concept design and construction work, which defines and achieves the integrity functions for major civil open services (OS) signals such as B1C, B2a, and B1I. The integrity definition and calculation method of BDS-3 are introduced. The fault tree model for satellite signal-in-space (SIS) is used, to decompose and obtain the integrity risk bottom events. In response to the weakness in the space and ground segments of the system, a variety of integrity monitoring measures have been taken. On this basis, the design values for the new B1C/B2a signal and the original B1I signal are proposed, which are 0.9 × 10−5 and 0.8 × 10−5, respectively. -
Geodynamics and Rate of Volcanism on Massive Earth-Like Planets
The Astrophysical Journal, 700:1732–1749, 2009 August 1 doi:10.1088/0004-637X/700/2/1732 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. GEODYNAMICS AND RATE OF VOLCANISM ON MASSIVE EARTH-LIKE PLANETS E. S. Kite1,3, M. Manga1,3, and E. Gaidos2 1 Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA 94720, USA; [email protected] 2 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA Received 2008 September 12; accepted 2009 May 29; published 2009 July 16 ABSTRACT We provide estimates of volcanism versus time for planets with Earth-like composition and masses 0.25–25 M⊕, as a step toward predicting atmospheric mass on extrasolar rocky planets. Volcanism requires melting of the silicate mantle. We use a thermal evolution model, calibrated against Earth, in combination with standard melting models, to explore the dependence of convection-driven decompression mantle melting on planet mass. We show that (1) volcanism is likely to proceed on massive planets with plate tectonics over the main-sequence lifetime of the parent star; (2) crustal thickness (and melting rate normalized to planet mass) is weakly dependent on planet mass; (3) stagnant lid planets live fast (they have higher rates of melting than their plate tectonic counterparts early in their thermal evolution), but die young (melting shuts down after a few Gyr); (4) plate tectonics may not operate on high-mass planets because of the production of buoyant crust which is difficult to subduct; and (5) melting is necessary but insufficient for efficient volcanic degassing—volatiles partition into the earliest, deepest melts, which may be denser than the residue and sink to the base of the mantle on young, massive planets. -
Advanced Geodynamics: Fourier Transform Methods
Advanced Geodynamics: Fourier Transform Methods David T. Sandwell January 13, 2021 To Susan, Katie, Melissa, Nick, and Cassie Eddie Would Go Preprint for publication by Cambridge University Press, October 16, 2020 Contents 1 Observations Related to Plate Tectonics 7 1.1 Global Maps . .7 1.2 Exercises . .9 2 Fourier Transform Methods in Geophysics 20 2.1 Introduction . 20 2.2 Definitions of Fourier Transforms . 21 2.3 Fourier Sine and Cosine Transforms . 22 2.4 Examples of Fourier Transforms . 23 2.5 Properties of Fourier transforms . 26 2.6 Solving a Linear PDE Using Fourier Methods and the Cauchy Residue Theorem . 29 2.7 Fourier Series . 32 2.8 Exercises . 33 3 Plate Kinematics 36 3.1 Plate Motions on a Flat Earth . 36 3.2 Triple Junction . 37 3.3 Plate Motions on a Sphere . 41 3.4 Velocity Azimuth . 44 3.5 Recipe for Computing Velocity Magnitude . 45 3.6 Triple Junctions on a Sphere . 45 3.7 Hot Spots and Absolute Plate Motions . 46 3.8 Exercises . 46 4 Marine Magnetic Anomalies 48 4.1 Introduction . 48 4.2 Crustal Magnetization at a Spreading Ridge . 48 4.3 Uniformly Magnetized Block . 52 4.4 Anomalies in the Earth’s Magnetic Field . 52 4.5 Magnetic Anomalies Due to Seafloor Spreading . 53 4.6 Discussion . 58 4.7 Exercises . 59 ii CONTENTS iii 5 Cooling of the Oceanic Lithosphere 61 5.1 Introduction . 61 5.2 Temperature versus Depth and Age . 65 5.3 Heat Flow versus Age . 66 5.4 Thermal Subsidence . 68 5.5 The Plate Cooling Model . -
Coordinate Systems in Geodesy
COORDINATE SYSTEMS IN GEODESY E. J. KRAKIWSKY D. E. WELLS May 1971 TECHNICALLECTURE NOTES REPORT NO.NO. 21716 COORDINATE SYSTElVIS IN GEODESY E.J. Krakiwsky D.E. \Vells Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N .B. Canada E3B 5A3 May 1971 Latest Reprinting January 1998 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. TABLE OF CONTENTS page LIST OF ILLUSTRATIONS iv LIST OF TABLES . vi l. INTRODUCTION l 1.1 Poles~ Planes and -~es 4 1.2 Universal and Sidereal Time 6 1.3 Coordinate Systems in Geodesy . 7 2. TERRESTRIAL COORDINATE SYSTEMS 9 2.1 Terrestrial Geocentric Systems • . 9 2.1.1 Polar Motion and Irregular Rotation of the Earth • . • • . • • • • . 10 2.1.2 Average and Instantaneous Terrestrial Systems • 12 2.1. 3 Geodetic Systems • • • • • • • • • • . 1 17 2.2 Relationship between Cartesian and Curvilinear Coordinates • • • • • • • . • • 19 2.2.1 Cartesian and Curvilinear Coordinates of a Point on the Reference Ellipsoid • • • • • 19 2.2.2 The Position Vector in Terms of the Geodetic Latitude • • • • • • • • • • • • • • • • • • • 22 2.2.3 Th~ Position Vector in Terms of the Geocentric and Reduced Latitudes . • • • • • • • • • • • 27 2.2.4 Relationships between Geodetic, Geocentric and Reduced Latitudes • . • • • • • • • • • • 28 2.2.5 The Position Vector of a Point Above the Reference Ellipsoid . • • . • • • • • • . .• 28 2.2.6 Transformation from Average Terrestrial Cartesian to Geodetic Coordinates • 31 2.3 Geodetic Datums 33 2.3.1 Datum Position Parameters . -
Pulsarplane D5.4 Final Report
NLR-CR-2015-243-PT16 PulsarPlane D5.4 Final Report Authors: H. Hesselink, P. Buist, B. Oving, H. Zelle, R. Verbeek, A. Nooroozi, C. Verhoeven, R. Heusdens, N. Gaubitch, S. Engelen, A. Kestilä, J. Fernandes, D. Brito, G. Tavares, H. Kabakchiev, D. Kabakchiev, B. Vasilev, V. Behar, M. Bentum Customer EC Contract number ACP2-GA-2013-335063 Owner PulsarPlane consortium Classification Public Date July 2015 PROJECT FINAL REPORT Grant Agreement number: 335063 Project acronym: PulsarPlane Project title: PulsarPlane Funding Scheme: FP7 L0 Period covered: from September 2013 to May 2015 Name of the scientific representative of the project's co-ordinator, Title and Organisation: H.H. (Henk) Hesselink Sr. R&D Engineer National Aerospace Laboratory, NLR Tel: +31.88.511.3445 Fax: +31.88.511.3210 E-mail: [email protected] Project website address: www.pulsarplane.eu Summary Contents 1 Introduction 4 1.1 Structure of the document 4 1.2 Acknowledgements 4 2 Final publishable summary report 5 2.1 Executive summary 5 2.2 Summary description of project context and objectives 6 2.2.1 Introduction 6 2.2.2 Description of PulsarPlane concept 6 2.2.3 Detection 8 2.2.4 Navigation 8 2.3 Main S&T results/foregrounds 9 2.3.1 Navigation based on signals from radio pulsars 9 2.3.2 Pulsar signal simulator 11 2.3.3 Antenna 13 2.3.4 Receiver 15 2.3.5 Signal processing 22 2.3.6 Navigation 24 2.3.7 Operating a pulsar navigation system 30 2.3.8 Performance 31 2.4 Potential impact and the main dissemination activities and exploitation of results 33 2.4.1 Feasibility 34 2.4.2 Costs, benefits and impact 35 2.4.3 Environmental impact 36 2.5 Public website 37 2.6 Project logo 37 2.7 Diagrams or photographs illustrating and promoting the work of the project 38 2.8 List of all beneficiaries with the corresponding contact names 39 3 Use and dissemination of foreground 41 4 Report on societal implications 46 5 Final report on the distribution of the European Union financial contribution 53 1 Introduction This document is the final report of the PulsarPlane project. -
Sunsets, Tall Buildings, and the Earth's Radius
Sunsets, tall buildings, and the Earth’s radius P.K.Aravind Physics Department Worcester Polytechnic Institute Worcester, MA 01609 ([email protected] ) ABSTRACT It is shown how repeated observations of the sunset from various points up a tall building can be used to determine the Earth’s radius. The same observations can also be used, at some latitudes, to deduce an approximate value for the amount of atmospheric refraction at the horizon. Eratosthenes appears to have been the first to have determined the Earth’s radius by measuring the altitude of the sun at noon in Alexandria on a day when he knew it to be directly overhead in Syene (Aswan) to the south [1]. Despite the vastly better methods of determining the Earth’s size and shape today, Eratosthenes’ achievement continues to inspire schoolteachers and their students around the world. I can still recall my high school principal, Mr. Jack Gibson, telling us the story of Eratosthenes on numerous occasions in his inimitable style, which required frequent audience participation from the schoolboys gathered around him. In 2005, as part of the celebrations accompanying the World Year of Physics, the American Physical Society organized a project [2] in which students from 700 high schools all over North America collaborated in a recreation of Eratosthenes’ historic experiment. The schools were teamed up in pairs, and each pair carried out measurements similar to those of Eratosthenes and pooled their results to obtain a value for the Earth’s radius. The average of all the results so obtained yielded a value for the Earth’s radius that differed from the true value by just 6%. -
Celestial Navigation At
Celestial Navigation at Sea Agenda • Moments in History • LOP (Bearing “Line of Position”) -- in piloting and celestial navigation • DR Navigation: Cornerstone of Navigation at Sea • Ocean Navigation: Combining DR Navigation with a fix of celestial body • Tools of the Celestial Navigator (a Selection, including Sextant) • Sextant Basics • Celestial Geometry • Time Categories and Time Zones (West and East) • From Measured Altitude Angles (the Sun) to LOP • Plotting a Sun Fix • Landfall Strategies: From NGA-Ocean Plotting Sheet to Coastal Chart Disclaimer! M0MENTS IN HISTORY 1731 John Hadley (English) and Thomas Godfrey (Am. Colonies) invent the Sextant 1736 John Harrison (English) invents the Marine Chronometer. Longitude can now be calculated (Time/Speed/Distance) 1766 First Nautical Almanac by Nevil Maskelyne (English) 1830 U.S. Naval Observatory founded (Nautical Almanac) An Ancient Practice, again Alive Today! Celestial Navigation Today • To no-one’s surprise, for most boaters today, navigation = electronics to navigate. • The Navy has long relied on it’s GPS-based Voyage Management System. (GPS had first been developed as a U.S. military “tool”.) • If celestial navigation comes to mind, it may bring up romantic notions or longing: Sailing or navigating “by the stars” • Yet, some study, teach and practice Celestial Navigation to keep the skill alive—and, once again, to keep our nation safe Celestial Navigation comes up in literature and film to this day: • Master and Commander with Russell Crowe and Paul Bettany. Film based on: • The “Aubrey and Maturin” novels by Patrick O’Brian • Horatio Hornblower novels by C. S. Forester • The Horatio Hornblower TV series, etc. • Airborne by William F. -
Lunar Distances Final
A (NOT SO) BRIEF HISTORY OF LUNAR DISTANCES: LUNAR LONGITUDE DETERMINATION AT SEA BEFORE THE CHRONOMETER Richard de Grijs Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Email: [email protected] Abstract: Longitude determination at sea gained increasing commercial importance in the late Middle Ages, spawned by a commensurate increase in long-distance merchant shipping activity. Prior to the successful development of an accurate marine timepiece in the late-eighteenth century, marine navigators relied predominantly on the Moon for their time and longitude determinations. Lunar eclipses had been used for relative position determinations since Antiquity, but their rare occurrences precludes their routine use as reliable way markers. Measuring lunar distances, using the projected positions on the sky of the Moon and bright reference objects—the Sun or one or more bright stars—became the method of choice. It gained in profile and importance through the British Board of Longitude’s endorsement in 1765 of the establishment of a Nautical Almanac. Numerous ‘projectors’ jumped onto the bandwagon, leading to a proliferation of lunar ephemeris tables. Chronometers became both more affordable and more commonplace by the mid-nineteenth century, signaling the beginning of the end for the lunar distance method as a means to determine one’s longitude at sea. Keywords: lunar eclipses, lunar distance method, longitude determination, almanacs, ephemeris tables 1 THE MOON AS A RELIABLE GUIDE FOR NAVIGATION As European nations increasingly ventured beyond their home waters from the late Middle Ages onwards, developing the means to determine one’s position at sea, out of view of familiar shorelines, became an increasingly pressing problem. -
How Big Is the Earth?
Document ID: 04_01_13_1 Date Received: 2013-04-01 Date Revised: 2013-07-24 Date Accepted: 2013-08-16 Curriculum Topic Benchmarks: M4.4.8, M5.4.12, M8.4.2, M8.4.15, S15.4.4, S.16.4.1, S16.4.3 Grade Level: High School [9-12] Subject Keywords: circumference, radius, Eratosthenes, gnomon, sun dial, Earth, noon, time zone, latitude, longitude, collaboration Rating: Advanced How Big Is the Earth? By: Stephen J Edberg, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, M/S 183-301, Pasadena CA 91011 e-mail: [email protected] From: The PUMAS Collection http://pumas.jpl.nasa.gov ©2013, Jet Propulsion Laboratory, California Institute of Technology. ALL RIGHTS RESERVED. Eratosthenes, the third librarian of the Great Library of Alexandria, measured the circumference of Earth around 240 B.C.E. Having learned that the Sun passed through the zenith1 on the summer solstice2 as seen in modern day Aswan, he measured the length of a shadow on the solstice in Alexandria. By converting the measurement to an angle he determined the difference in latitude – what fraction of a circle spanned the separation – between Aswan and Alexandria. Knowing the physical distance between Aswan and Alexandria allowed him to determine the circumference of Earth. Cooperating schools can duplicate Eratosthenes’ measurements without the use of present day technology, if desired. Sharing their data permits students to calculate the circumference and the radius of Earth. The measurements do not require a site on the Tropic of Cancer (or the Tropic of Capricorn) but they must be made at local solar noon on the same date. -
Map Projections and Coordinate Systems Datums Tell Us the Latitudes and Longi- Vertex, Node, Or Grid Cell in a Data Set, Con- Tudes of Features on an Ellipsoid
116 GIS Fundamentals Map Projections and Coordinate Systems Datums tell us the latitudes and longi- vertex, node, or grid cell in a data set, con- tudes of features on an ellipsoid. We need to verting the vector or raster data feature by transfer these from the curved ellipsoid to a feature from geographic to Mercator coordi- flat map. A map projection is a systematic nates. rendering of locations from the curved Earth Notice that there are parameters we surface onto a flat map surface. must specify for this projection, here R, the Nearly all projections are applied via Earth’s radius, and o, the longitudinal ori- exact or iterated mathematical formulas that gin. Different values for these parameters convert between geographic latitude and give different values for the coordinates, so longitude and projected X an Y (Easting and even though we may have the same kind of Northing) coordinates. Figure 3-30 shows projection (transverse Mercator), we have one of the simpler projection equations, different versions each time we specify dif- between Mercator and geographic coordi- ferent parameters. nates, assuming a spherical Earth. These Projection equations must also be speci- equations would be applied for every point, fied in the “backward” direction, from pro- jected coordinates to geographic coordinates, if they are to be useful. The pro- jection coordinates in this backward, or “inverse,” direction are often much more complicated that the forward direction, but are specified for every commonly used pro- jection. Most projection equations are much more complicated than the transverse Mer- cator, in part because most adopt an ellipsoi- dal Earth, and because the projections are onto curved surfaces rather than a plane, but thankfully, projection equations have long been standardized, documented, and made widely available through proven programing libraries and projection calculators.