Self-Explaining Roads,” in Which They Argued for the Devel- Opment of a New Concept for Approaching Safe Road Design

Total Page:16

File Type:pdf, Size:1020Kb

Self-Explaining Roads,” in Which They Argued for the Devel- Opment of a New Concept for Approaching Safe Road Design Theeuwes Cogn. Research (2021) 6:15 https://doi.org/10.1186/s41235-021-00281-6 Cognitive Research: Principles and Implications REVIEW ARTICLE Open Access Self-explaining roads: What does visual cognition tell us about designing safer roads? Jan Theeuwes1,2* Abstract In 1995, Theeuwes and Godthelp published a paper called “self-explaining roads,” in which they argued for the devel- opment of a new concept for approaching safe road design. Since this publication, self-explaining roads (SER) became one of the leading principles in road design worldwide. The underlying notion is that roads should be designed in such a way that road users immediately know how to behave and what to expect on these roads. In other words, the environment should be designed such that it elicits adequate and safe behavior. The present paper describes in detail the theoretical basis for the idea of SER and explains why this has such a large efect on human behavior. It is argued that the notion is frmly rooted in the theoretical framework of statistical learning, subjective road categorization and the associated expectations. The paper illustrates some successful implementation and describes recent develop- ments worldwide. Signifcance statement elicits automatically the behavior that is appropriate for In 1995, the idea was put forward that a trafc environ- that type of road. In other words, the road nudges the ment should elicit safe behavior simply by its design. Tis right behavior without the need for much enforcement or idea was dubbed self-explaining roads (SER), and over education. the course of 25 years, this approach became the lead- Since its publication, the notion of SER has gained a ing principle of road design worldwide. Te current lot of momentum and is now considered the main design paper describes the psychological principles underly- principle for road authorities and departments of trans- ing the concept of SER and describes current trends and portation worldwide. In many countries across the world, developments. roads were redesigned and adapted such that the road was adapted consistent with the SER principles. Te EU Introduction Mobility and Transport committee also adopted this In a paper published in 1995, Teeuwes and Godthelp principle (see web) and has funded several research pro- were the frst to introduce the concept of self-explain- jects focusing on this issue. In 2010, the World Health ing roads (SER) as the leading principle of road design Organization (WHO) and the United Nations (UN) (Teeuwes and Godthelp 1995; Teeuwes 1998). Te explicitly mentioned the need for “promoting the safe sys- basic notion of a self-explaining road is a “trafc envi- tem approach and the role of self-explaining and forgiving ronment which elicits safe behavior simply by its design” road infrastructure” proclaiming the decade of action for (Teeuwes and Godthelp 1995, p. 217). Te underlying road safety. idea is that the design and layout of the road environment In 2010, Charman et al. (2010) published an extensive literature review regarding self-explaining roads and the various approaches to the concept. Tis review was part *Correspondence: [email protected] th 1 Department of Experimental and Applied Psychology, Vrije Universiteit of a larger SPACE project funded by the 6 framework of Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The European Commission as part of the European Research Netherlands Area Network ROAD. Charman et al. (2010) concluded Full list of author information is available at the end of the article that “the self-explaining road message fell on fertile © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. Theeuwes Cogn. Research (2021) 6:15 Page 2 of 15 ground, and within a decade the terms self-explaining Selecting relevant information and avoiding distract- roads concept, self-explaining road principles, and even ing information is crucial during driving. It has been self-explaining road philosophy were in wide-spread use, estimated that over 90% of the information that a driver not just in Europe but across the globe, and often in situ- has to process is visual (Hills 1980; Sivak 1996; Spence ations far-removed from those envisaged by the original and Ho 2015). It is also known that defciencies in visual authors” (Charman et al. 2010, p. 10). attention are responsible for a large proportion of road When initially publishing this paper in 1995, we could trafc accidents (Charlton and Starkey 2013; Sabey and never have foreseen the impact of our ideas on the way Taylor 1980). Research on hazard perception has shown engineers, scientists and policy makers approach road that drivers with good hazard perception skills are less safety. In the original publication, we did not provide a involved in accidents than those drivers with low hazard solid theoretical basis for the principles underlying SER. perception, for example novice drivers (McKenna and Te goal of the present paper is to provide this theoreti- Crick 1991; Scialfa et al. 2011). Critically, accident data cal basis. It is argued that visual selection during driving have shown that in many cases, drivers that are involved is very much determined by what has been labeled by in automobile crashes do not act too late but do not act basic visual cognition theories as “selection history” (Awh at all to avoid the collision (Guo et al. 2010), suggesting et al. 2012; Teeuwes 2019). According to this idea, our that they simply did not attend to the event that ulti- past experiences of paying attention to certain objects mately resulted in a crash. Detection of potential hazards or events and not to others have a strong and enduring is particular difcult when the road environment is com- efect on what will be attended when we encounter simi- plex and unusual and the cognitive load is relatively high, lar contexts again. We argue that the efect of past driv- for example when drivers are relatively inexperienced or ing experiences will bias visual selection in an implicit drive in a foreign city (Kahana-Levy et al. 2019; Under- and automatic way, explaining why it is so important to wood et al. 2002). design roads which are consistent with these automatic Te crucial point is that in many cases human error biases. We highlight the role of statistical learning dur- plays a large role in road crashes. For example, accord- ing driving, subjective road categorization and the asso- ing to a study from 2016 of the National Highway Trans- ciated expectations. Te paper illustrates some successful portation Safety Administration (NHTSA 2016), in the implementations and describes recent developments USA somewhere between 94 and 96% of all car accidents worldwide. are caused by human error. Instead of blaming the driver for making these errors, in many cases, road crashes are Self‑explaining roads: the underlying theory caused by design-induced errors (Dumbaugh et al. 2020). Background Tis indicates that the road design may have been so It is generally agreed that most trafc accidents are confusing, inconsistent and violating the expectancies related to human error (e.g., Treat et al. 1977; NHTSA of road users that errors are likely to occur even when 2016). Because educating road users and mass media road users actively try to prevent them. Making roads campaigns directed towards changing road users behav- “self-explaining” focuses on a road-user-adapted design ior only have limited efects (see Wakefeld et al. 2010), using road elements such as signs, markings, geometry, it is crucial that the road environment elicits adequate road surface, lighting, road surface, trafc and speed behavior and minimizes human errors simply by its management, to prevent errors from occurring. In addi- design. Driving a vehicle (especially among those who tion to preventing errors from occurring, another impor- are experienced drivers) involves hardly any conscious tant aspect of a safe infrastructure is to make roads more control and basically consists of several skill-based com- “forgiving” implying that if an error is made, its conse- ponents that are fully automatized (Wickens and Horrey quences are minimized. In other words, the design of 2009). It has been argued that behavior can be triggered the road should forgive the driver for making errors by automatically by features in the environment (Bargh reducing the severity of accidents (Nitsche et al. 2010). and Ferguson 2000), suggesting that drivers may display From a theoretical point of view, it is assumed that behavior that is inconsistent with their explicit goals. For selecting information from the environment is the result example, drivers coincidently following a familiar route of the interaction between intentions and the goals of the to get to another new destination may fnd themselves driver (current selection goals) and the physical proper- following the familiar route too far. Also, in a driving ties of the visual environment (saliency of the objects). simulator study, it was shown that after driving the same Many basic models of attentional control have described route 24 times over four days participants failed to notice selection as a result of this interaction between what that an important road sign had changed (Martens and are referred to as “bottom-up” and “top-down” pro- Fox 2007).
Recommended publications
  • Fact Sheet New Type of Layout for 60 Km/H Rural Roads
    SWOV Fact sheet Edge strips on rural access roads Summary In a sustainably safe traffic system, uniformity of traffic facilities is a point of special interest. Uniformity ensures recognizability and predictability of (critical) traffic situations. The uniformity of rural access roads can be increased by applying edge strips on both sides of the road; this creates a narrow single lane for motorised vehicles in the middle of the carriageway: a marked driving lane. Edge strips are marked with broken lines. The edge strips on either side of the marked driving lane can be used by cyclists if they are sufficiently wide. Studies indicate that this type of marking slightly increases road safety. Background and content When redesigning rural roads according to the Sustainable Safety guidelines, 80 km/h roads with a minor traffic function in rural residential areas are converted into rural access roads. This road category is intended for use by all transport modes and has a speed limit of 60 km/h. In a sustainably safe traffic system, uniformity of traffic facilities is a point of special interest. Uniformity is a way of ensuring recognizability and predictability of (critical) traffic situations (see also the SWOV Fact sheet Recognizable road design). The uniformity of rural access roads can be increased by applying edge strips; this leaves a marked driving lane for motorized vehicles in the middle of the carriageway (see Figure 1). The present Fact sheet will discuss the requirements for the different types of edge strips on rural access road and the effects on traffic behaviour and road safety.
    [Show full text]
  • SMART MOBILITY #Smarttogether
    SMART MOBILITY #SmartTogether Get to know the Smart Mobility opportunities in the Netherlands The Dutch Way Photo: TNO The Netherlands: a small country with great potential Smart Mobility is a theme of global proportions. Half of the world population lives in megacities and this share increases every year. In all densely populated metropolitan areas, mobility, in logical tandem with the quality of life, is one of the most important issues in today’s society. Throughout the world, Smart Mobility is the object of turbulent development. In Europe, the topic has been high on the innovation agenda for many years, and the European Commission provides incentives for research and development and application projects. The Netherlands off ers (international) entrepreneurs who develop Smart Mobility initiatives a unique business and innovation climate. The Netherlands is a densely populated transport hub with an infrastructure and an innovation climate that rank among the best of the world. The Netherlands has an extensive, high-quality road system in urban areas. In addition, the Netherlands is the home turf of a number of prestigious knowledge clusters in the automotive, technology and high-tech industry. Furthermore, the Netherlands is characterized by a culture of open networks and intensive cooperation, and has the highest percentage of mobile Internet users in the world. The Netherlands means business when it comes to Smart Mobility; not just to promote domestic development, but to take the lead in developing pioneering initiatives. 2 #SmartTogether The Netherlands as a Living Lab: develop and test in practice! The Netherlands means business when it comes to Smart Mobility.
    [Show full text]
  • The Relationship Between Traffic Volume and Road Safety on the Secondary Road Network
    The relationship between traffic volume and road safety on the secondary road network Kirsten Duivenvoorden D-2010-2 The relationship between traffic volume and road safety on the secondary road network A literature review D-2010-2 Kirsten Duivenvoorden Leidschendam, 2010 SWOV Institute for Road Safety Research, The Netherlands Report documentation Number: D-2010-2 Title: The relationship between traffic volume and road safety on the secondary road network Subtitle: A literature review Author(s): Kirsten Duivenvoorden Project leader: Wendy Weijermars Project number SWOV: 01.6.1.2 Keywords: Congestion (traffic), motorway, secondary road, accident, speed, junction, roundabout, traffic flow, mathematical model, Netherlands. Contents of the project: This literature study aims to give more insight into the relationship between traffic volume and road safety and is limited to road sections and intersections on secondary rural roads (mainly 80 km/h distributor roads) in the Netherlands. The two most common types of intersections - roundabouts and signalised intersections - are discussed in the present study. Number of pages: 25 Price: € 8,75 Published by: SWOV, Leidschendam, 2010 This publication contains public information. However, reproduction is only permitted with due acknowledgement. SWOV Institute for Road Safety Research P.O. Box 1090 2260 BB Leidschendam The Netherlands Telephone +31 70 317 33 33 Telefax +31 70 320 12 61 E-mail [email protected] Internet www.swov.nl Summary On motorways, congestion is a well-known traffic problem. On the secondary road network, the same problem arises when traffic volume increases and the driven speed decreases. At certain times of day, roads get congested and the number of interactions between road users increases.
    [Show full text]
  • Communications
    rijkswaterstaat I communications , wrong-way driving by ir. g. 8. brevoord no. 36/1984 B 3185 RIJKSWATERSTAAT COMMUNICATIONS WRONG-WAY DRIVING Driving the wrong way on one-way roads and specifically motorway carnageways Description of the magnitude and nature of the problem and of measures which may reduce the incidence of this phenomenon, with particular reference to roads by ir. G. A. Brevoord Head of the Seetion for Geometrie Design Transport and Traffie Engineering Division Publie Works Department (I •• __ 0 __ - •• ------11I The Hague 1984 i 2.:J';;'-,.,'U F,;-\'-\ I $-C·.:iavenhage L-__~~._~-_.~----- All correspondence and applications should he addressed to RIJKSWATERSTAAT DIRECTIE WATERHUISHOUDING EN WATERBEWEGING HOOFTSKADE 1 P.O. BOX 20907 2500 EX THE HAGUE - THE NETHERLANDS The views in this article are the authors •own. The Dutch version was produced in cooperation with the Royal Dutch Touring Club. Main catalogue entry: 8revoord, G. A. Wrong-way driving: driving thewrong way on one-way roads and specifically motorway carriageways: description of the magnitude and nature of the problem and of measures which may reduce the incidence of this phenomenon with particular reference to roads / by G. A~ Brevoord; Rijkswaterstaat. _ The Hague : Rijkswaterstaat, 1984. - 124 p. : ann., ill. ; 24 cm. - (Rijkswaterstaat communications; no. 36) Bibliogr.: p. 114. Contents page Preface 7 Summary 8 1 Introduction 9 2 The magnitude and nature of the problem 11 2.1 General .................. 11 2.2 Fatal accidents involving wrong-way drivers 11 2.3 A more detailed analysis of fatal accidents involving wrong-way drivers 15 2.4 Accidents involving and reports of wrong-way drivers in 1980 .
    [Show full text]
  • FHWA Study Tour for Pedestrian and Bicyclist Safety in England, Germany, and the Netherlands
    FHWA Study Tour for Pedestrian and Bicyclist Safety in England, Germany, and The Netherlands October 1994 Notice The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation. The metric units reported are those used in common practice by the persons interviewed. They have not been converted to pure SI units since, in some cases, the level of precision implied would have been changed. The United States equivalents to the foreign currency amounts appearing in this report are based on the rates of exchange in effect during the time of the study tour. The United States Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the objective of this document. This report does not constitute a standard, specification, or regulation. FHWA International Technology Scanning Program Study Tour Summary Report on FHWA Study Tour for Pedestrian and Bicyclist Safety in England, Germany, and The Netherlands Prepared by the study tour team Charles V. Zegeer University of North Carolina and Michael Cynecki, City of Phoenix, Arizona Peter Lagerwey, City of Seattle, Washington John Fegan, Federal Highway Administration Carol Tan, Federal Highway Administration Brian Gilleran, Federal Highway Administration Bob Works, Minnesota Department of Transportation and the Transportation Technology Evaluation Center (TTEC) International Technology Research Institute Loyola College in Maryland Baltimore, MD 21210 Prepared for Federal Highway Administration U.S. Department of Transportation Washington, DC 20590 October 1994 TABLE OF CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Safe Interaction Between Cyclists, Pedestrians and Automated Vehicles
    Safe interaction between cyclists, pedestrians and automated vehicles R-2016-16 Safe interaction between cyclists, pedestrians and automated vehicles Luuk Vissers, MSc, Sander van der Kint, MSc, Ingrid van Schagen & Prof. Marjan Hagenzieker R-2016-16 Safe interaction between cyclists, pedestrians and automated vehicles What do we know and what do we need to know? R-2016-16 Luuk Vissers, MSc, Sander van der Kint, MSc, Ingrid van Schagen & Prof. Marjan Hagenzieker The Hague, 2016 SWOV Institute for Road Safety Research, The Netherlands Report documentation Number: R-2016-16 Title: Safe interaction between cyclists, pedestrians and automated vehicles Subtitle: What do we know and what do we need to know? Author(s): Luuk Vissers, MSc, Sander van der Kint, MSc, Ingrid van Schagen & Prof. Marjan Hagenzieker Project leader: Prof. Marjan Hagenzieker Project number SWOV: S16.05 Keywords: Cyclist, pedestrian, vehicle, automatic, electronic driving aid, driving (veh), behaviour, skill (road user), decision process, safety. Contents of the project: Automated vehicles are gradually entering our roadway system. This report look into the position of pedestrians and cyclists in a future traffic system in which fully automated vehicles, partly automated vehicles and manually-driven vehicles have to share our roads. It provides an overview of current knowledge about the interaction of pedestrians and cyclists with (partly) automated vehicles. Furthermore, it identifies what we need to know in order to ensure that a (partly) automated driving system does not compromise the safety of pedestrians and cyclists. Number of pages: 46 Published by: SWOV, The Hague, 2016 This publication contains public information. However, reproduction is permitted with due acknowledgement.
    [Show full text]
  • FHWA Scanning Report on Traffic Management and Traveler
    TrafficManagement and Traveler Information Systems INTERNATIONAL FHWA’s Scanning Program U.S. Department of Transportation Federal Highway Administration November 1997 Notice The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the U.S. Department of Transportation. The metric units reported are those used in common practice by the persons interviewed. In some case, they have not been converted to pure SI units since the level of precision implied would have changed. The U.S. equivalents to the foreign currency amounts appearing in this report are based on approximate rates of exchange in effect during the time of the study tour. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear herein only because they are considered essential to the objective of this document. This report does not constitute a standard, specification, or regulation. FHWA International Technology Report on Traffic Management and Traveler Information Systems Prepared by the study tour team Wayne Berman FHWA Steve W. Clinger Gene S. Donaldson FHWA Montgomery County John Duve David R. Gehr SANDAG Virginia DOT Gregory M. Jones Jerry L. King FHWA Metropolitan Transit Authority Steve Kuciemba Joseph F. Ligas Maryland SHA Illinois DOT Pamela P. Marston James R. Robinson FHWA Virginia DOT Dennis Symes Juan M. Morales FTA J.M. Morales & Associates and Transportation Technology Evaluation Center (TTEC) International Technology Research Institute (ITRI) Loyola College in Maryland Baltimore, MD 21210 Prepared for Federal Highway Administration U.S.
    [Show full text]
  • Roads 2018 Roads
    Roads 2018 Roads CONTENTS 1 Overview _________________________________________________________________ 4 2 Designing for road function___________________________________________________ 5 2.1 Road classification _____________________________________________________________ 5 2.2 Safe System __________________________________________________________________ 7 2.3 Self-explaining roads ___________________________________________________________ 9 2.4 Investing in road improvement __________________________________________________ 10 3 Urban roads ______________________________________________________________ 11 3.1 Urban Safety Management _____________________________________________________ 11 3.2 20mph (30km/h) zones ________________________________________________________ 13 3.3 Shared Space and Mixed Priority _________________________________________________ 14 4 Rural roads ______________________________________________________________ 15 4.1 Rural Safety Management ______________________________________________________ 15 4.2 Rural Roads Safety Issues ______________________________________________________ 17 5 Getting initial safety design principles right _____________________________________ 17 5.1 Alignment ___________________________________________________________________ 18 5.2 Cross-sections _______________________________________________________________ 21 5.3 Roadside treatment ___________________________________________________________ 22 5.4 Junctions ___________________________________________________________________ 24
    [Show full text]
  • The Feasibility of a New Shared Space in Canberra
    The Feasibility of a New Shared Space in Canberra IMPROVING THE BUNDA STREET SHAREWAY DESIGN AND ASSESSING THE FEASIBILITY OF CONVERTING LONSDALE STREET INTO A SHARED SPACE U5589902 ENGN2226 DESIGN PORTFOLIO Abstract Shared spaces are a recent urban traffic engineering concept that aim to integrate road users through the removal of traditional traffic control devices. They reduce the dominance of cars in public spaces by allowing user behaviour to be determined by social protocols instead of traffic rules, with the ultimate aim of increasing accessibility and safety for pedestrians and cyclists. This report investigates the success of the Bunda Street Shareway design and how it could be improved, identifies safety issues through evaluating existing Shared Space implementations around the world and evaluates the feasibility of implementing a Shared Space on Lonsdale Street in Braddon. Various aspects of the Bunda Street Shareway design were examined, including the road changes, signage, advertisement, safety measures for vulnerable users, construction time and costs involved. Recommendations are made on how the design could be improved and how it would need to implemented if applied to Lonsdale Street. 1 Contents Abstract ........................................................................................................................................................... 1 Introduction to Shared Spaces ........................................................................................................................ 3 Assessing
    [Show full text]
  • Optimal Redesign of the Dutch Road Network
    Optimal Redesign of the Dutch Road Network M. Sneldera,b,*, A.P.M. Wagelmansc, J.M. Schrijvera, H.J. van Zuylenb, L.H. Immersa,d aTNO, Van Mourik Broekmanweg 6, P.O. Box 49, 2600 AA Delft, The Netherlands bDelft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Transport and Planning P.O. Box 5048, 2600 GA Delft, The Netherlands cEconometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands dCatholic University of Leuven, Department of Transportation Planning and Highway Engineering, Kasteelpark Arenberg, 40, B-3001 Heverlee, Belgium Econometric Institute Report EI 2005-55 Abstract The Dutch national road network has been developed over several decades. In the past, roads were constructed according to the then current spatial and transportation planning philosophies. Because the existing road network is a result of a long process of successive developments, the question can be asked whether this network is the most appropriate from the current point of view, especially taking in consideration the current socio-economic structure of the Netherlands. To answer this question an optimization algorithm for designing road networks has been developed. With this algorithm the Dutch road network has been redesigned based on minimization of the travel and infrastructure costs and by taking into account the socio-economic structure of the Netherlands. A comparison between the existing network and the new design shows that the redesigned Dutch national road network has significantly lower total costs than the existing road network. It is found that the construction of less roads with more lanes on different locations leads to a reduction of the total travel time and the total vehicles kilometers traveled.
    [Show full text]
  • Data Sources
    Data sources Comprehensive overview Comprehensive overview of data sources used by SWOV. SWOV, The Hague, 2016 SWOV Institute for Road Safety Research Postbus 93113 2509 AC The Hague Telephone 070 317 33 33 Telefax 070 320 12 61 E-mail [email protected] Internet www.swov.nl Content Foreword 7 1. The national road crash registration BRON 8 1.1. Application in road safety research 8 1.2. Method 8 1.3. Availability crash data 9 1.4. Reliability, accuracy, completeness 9 1.5. Literature and sources 10 2. Population Statistics 11 2.1. Application in road safety research 11 2.2. Method 11 2.3. Availability data 12 2.4. Reliability, accuracy, completeness 12 2.5. Variables 12 2.6. Regional grouping of municipalities 12 2.7. Literature and sources 13 3. Community database on Accidents on the Roads in Europe (CARE) 14 3.1. Available CARE data 14 3.2. Comparability of CARE data 14 3.3. Literature and references 14 4. Cause of Death Statistics 14 4.1. Method used to collect data 16 4.2. Codering 16 4.3. Population 16 4.4. Reliability, accuracy, completeness 17 4.5. ICD-lijsten 17 4.6. Literature and sources 17 5. Serious road injuries 18 5.1. Application in road safety research 18 5.2. Method 18 5.3. Availability data 19 5.4. Reliability, accuracy, completeness 19 5.5. Variables 19 5.6. Literature and sources 20 6. Eurostat 21 6.1. Literature and sources 21 7. International Road Traffic and Accident Database (IRTAD) 22 7.1.
    [Show full text]
  • Traffic Calming in the Netherlands
    Traffic Calming in The Netherlands Teun de Wit & Hillie Talens, CROW 1. Introduction In this paper an outline is provided covering the developments with regard to the structural design of roads and road safety. This also encompasses the legal aspects and the social organizations involved. As might be expected, legislation lags a few years behind developments in the social situation. In addition a brief outline is sketched of the extent to which these developments have been included in manuals and other aids used by traffic engineering designers. 2. Prior to the nineteen-sixties; the start Figure 1. The first design guidelines for the structural design of a public highway, 1911, Wiesbaden Germany In the distant past the width of a road was determined by the type of carts and carriages then in use, which were mainly horse drawn, or it was determined by military columns marching in line across the country. In built-up areas this was usually determined by the ability of two horses or two pedestrians to safely pass one another, particularly when within ancient city- walls and canals. Due to the geographical structure of the flat polder landscape prevalent throughout the larger part of the Netherlands, once the bicycle was invented it quickly became the preferred mode of transport. This popular means of transportation was also able to make simple use of the semi-paved roads then covering the country. At the end of the last century the Royal Dutch Touring Club (ANWB) was founded as the main organization protecting the interests of cyclists. A few years later this organization became concerned with the direction signing of roads, which remains today as one of their most well known and important activities.
    [Show full text]