Neuroimaging of Pediatric Brain Tumors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Choroid Plexus Papilloma Causing CSF Shunt Ascites: a Rare Presentation
Case Report Annals of Clinical Case Reports Published: 13 Jun, 2017 Choroid Plexus Papilloma Causing CSF Shunt Ascites: A Rare Presentation Deepak Sachan* Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital,New Delhi, India Abstract Choroid Plexus Papillomas (CPPs) are congenital intracranial tumors of neuro-ectodermal origin. Choroid plexus neoplasms constitute about 0.5% of all intracranial neoplasms.Majority are found in lateral ventricles. Most of these neoplasms are benign papillomas, while one-fifth are malignant carcinomas. The present communication describes a rare case of a choroid plexus papilloma leading to CSF ascites following Ventriculoperitoneal (VP) shunt. Case Presentation A 5 year old boy presented to us with complaints of progressively increasing abdominal distension from past 6 months and respiratory distress for 2 days. There was no history of jaundice or bleeding manifestations. Patient was a known case of hydrocephalus for which medium pressure VP shunt (chabra shunt) was placed at the age of 3 years. On examination child was having massive ascitis with positive fluid thrill sign. There was no hepato-spenomegaly and other signs of hepatocellular failure. Neurologically the child was conscious and oriented and there were no signs of shunt dysfunction. Shunt bulb was palpable and soon gets refilled after compressing the bulb. Paracentesis showed clear transudate fluid with no evidence of infection (WBC= 5 cells/mm3, all lymphocytes, sugar = 72 mg/dl and protein = 24 mg/dl). Ascitic fluid culture was sterile and was negative for Acid fast bacilli. In addition, cytology was negative for malignant cell. Liver and renal function test were essentially normal (serum bilirubin = 0.6 mg/dl, SGOT = 36 U/I, SGPT = 11 U/I, serum albumin = 3.8 gm/dl, urea = 27 mg/dl, creatine = 0.8 mg/dl). -
Choroid Plexus Papilloma Arising from the Temporal Horn with a Bilateral Hypersecretory Hydrocephalus: a Case Report and Review of Literature
Elmer ress Case Report World J Oncol. 2016;7(2-3):51-56 Choroid Plexus Papilloma Arising From the Temporal Horn With a Bilateral Hypersecretory Hydrocephalus: A Case Report and Review of Literature Sureswar Mohantya, Suman Saurav Routb, d, Gouri Sankar Sarangia, Kumudini Devic Abstract occur in the third ventricle. These tumors are benign histologi- cally and are neuroectodermal in origin and assigned a WHO Cerebrospinal fluid (CSF) within the cerebral ventricular system is grade I. Complete or gross total resection of these tumors often secreted by a neuroepithelial tissue which is called as the choroid results in a cure and almost recurrence free survival. The spe- plexus. Tumors arising from these tissues are rare. Choroid plexus cial challenges in the management of these tumors are mostly papillomas (CPPs) have been denoted as WHO grade I of the cho- due to its several unique features which include the young age roid plexus tumors. Among the intracranial tumors, neoplasms of the at presentation, high vascularity of these tumors and the poten- choroid plexus constitute around 0.36-0.6%. CPPs are mostly slow tial for hypersecretion of CSF. growing and cause symptoms due to mass effect and obstructive hy- drocephalus, resulting in increased intracranial pressure. We report a Case Report case of CPP arising from the temporal horn in a 7-year-old girl pre- senting with progressive head enlargement since birth due to bilateral massive hydrocephalus without any obstruction, making it purely a A 7-year-old girl presented with progressive head enlargement hypersecretory hydrocephalus. A drainage procedure followed by since birth, features of raised intracranial pressure in the form complete tumor resection was carried out in our case and the patient of headache, vomiting, excessive crying and excessive drowsi- showed marked relief from her symptoms. -
The Role of PET in Supratentorial and Infratentorial Pediatric Brain Tumors
Review The Role of PET in Supratentorial and Infratentorial Pediatric Brain Tumors Angelina Cistaro 1,2 , Domenico Albano 3 , Pierpaolo Alongi 4,* , Riccardo Laudicella 5 , Daniele Antonio Pizzuto 6 , Giuseppe Formica 5, Cinzia Romagnolo 7, Federica Stracuzzi 5, Viviana Frantellizzi 8 , Arnoldo Piccardo 1,2 and Natale Quartuccio 2,9 1 Nuclear Medicine Department, Ospedali Galliera, 16128 Genova, Italy; [email protected] (A.C.); [email protected] (A.P.) 2 AIMN Pediatric Study Group, 20159 Milan, Italy; [email protected] 3 Department of Nuclear Medicine, University of Brescia and Spedali Civili Brescia, 25123 Brescia, Italy; [email protected] 4 Unit of Nuclear Medicine, Fondazione Istituto G. Giglio, 90015 Cefalù, Italy 5 Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, A.O.U. Policlinico G. Martino, University of Messina, 98125 Messina, Italy; [email protected] (R.L.); [email protected] (G.F.); [email protected] (F.S.) 6 Department of Nuclear Medicine, University Hospital Zürich, 8091 Zürich, Switzerland; [email protected] 7 Nuclear Medicine Unit, Ospedali Riuniti, Torrette di Ancona, 60126 Ancona, Italy; [email protected] 8 Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy; [email protected] 9 Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy * Correspondence: -
University of California, Irvine
UNIVERSITY OF CALIFORNIA, IRVINE Demystifying the Choroid Plexus THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Biomedical Engineering by Esmeralda Romero Lorenzo Thesis Committee: Professor Edwin Monuki, Chair Professor Michelle Digman Professor Wendy Liu 2020 © 2020 Esmeralda Romero Lorenzo TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES v ABSTRACT vii CHAPTER 1: Introduction 1 1.1 The Choroid Plexus and Its functional Role in the Brain 1 1.2 Clinical Significance 3 CHAPTER 2: Choroid Plexus Overview 5 2.1 Anatomy of the Choroid Plexus 5 2.2 Choroid Plexus Epithelial Cells 6 2.3 Choroid Plexus Epithelial Cell Proteins 6 2.3.1 Transthyretin 6 2.3.2 Aquaporin 1 7 2.3.3 ZO-1 8 CHAPTER 3: TTR:tdTomato CPEC Reporter Mouse Culture 9 3.1 TTR:tdTomato Reporter Mouse Characteristics 9 3.2 Methods to Evaluate TTR:tdTomato CPEC Reporter Mouse Line 10 3.2.1. Determining Homozygosity 10 3.2.2 Dissection and Imaging 11 3.3 TTR:tdTomato Reporter Mouse Results 11 CHAPTER 4: Choroid Plexus Epithelial Cell Heterogeneity in vitro 12 4.1 Cell Morphology Heterogeneity in vitro 12 4.2 Methods to Study Heterogeneity in vitro 12 4.2.1 Dissection and Cell Culture 13 4.2.2 Immunohistochemistry 13 4.3 Results 13 4.3.1 Nucleus Size in vitro 14 4.3.2 Cell Morphology 15 4.3.3 Cell Nuclear-Cytoplasmic Ratio 15 4.4 Summary and Future Work 19 CHAPTER 5: CPEC Protein Expression 21 5.1 Heterogeneity in CPEC Protein Expression Heterogeneity 21 5.2 Cell Expression Heterogeneity Methods 21 5.2.1 Dissection and Cell -
Choroid Plexus Tumors: a Review
UC San Diego UC San Diego Previously Published Works Title Perinatal (fetal and neonatal) choroid plexus tumors: a review. Permalink https://escholarship.org/uc/item/0sm7q5q7 Journal Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery, 35(6) ISSN 0256-7040 Authors Crawford, John R Isaacs, Hart Publication Date 2019-06-01 DOI 10.1007/s00381-019-04135-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California Child's Nervous System (2019) 35:937–944 https://doi.org/10.1007/s00381-019-04135-x REVIEW ARTICLE Perinatal (fetal and neonatal) choroid plexus tumors: a review John R. Crawford1,2,3 & Hart Isaacs Jr3,4 Received: 13 September 2018 /Accepted: 20 March 2019 /Published online: 5 April 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Introduction The object of this review is to describe the choroid plexus tumors (CPTs) occurring in the fetus and neonate with regard to clinical presentation, location, pathology, treatment, and outcome. Materials and methods Case histories and clinical outcomes were reviewed from 93 cases of fetal and neonatal tumors obtained from the literature and our own institutional experience from 1980 to 2016. Results Choroid plexus papilloma (CPP) is the most common tumor followed by choroid plexus carcinoma (CPC) and atypical choroid plexus papilloma (ACPP). Hydrocephalus and macrocephaly are the presenting features for all three tumors. The lateral ventricles are the main site of tumor origin followed by the third and fourth ventricles, respectively. CPTs of the fetus are detected most often near the end of the third trimester of pregnancy by fetal ultrasound. -
Superior Parietal Lobule Approach for Choroid Plexus Papillomas Without Preoperative Embolization in Very Young Children
PEDIATRICS CLINICAL ARTICLE J Neurosurg Pediatr 16:101–106, 2015 Superior parietal lobule approach for choroid plexus papillomas without preoperative embolization in very young children Benjamin C. Kennedy, MD,1 Michael B. Cloney, BA,1 Richard C. E. Anderson, MD,1,2 and Neil A. Feldstein, MD1,2 1Department of Neurological Surgery and 2Children’s Hospital of New York, Columbia University, New York, New York OBJECT Choroid plexus papillomas (CPPs) are rare neoplasms, often found in the atrium of the lateral ventricle of infants, and cause overproduction hydrocephalus. The extensive vascularity and medially located blood supply of these tumors, coupled with the young age of the patients, can make prevention of blood loss challenging. Preoperative emboli- zation has been advocated to reduce blood loss and prevent the need for transfusion, but this mandates radiation expo- sure and the additional risks of vessel injury and stroke. For these reasons, the authors present their experience using the superior parietal lobule approach to CPPs of the atrium without adjunct therapy. METHODS A retrospective review was conducted of all children who presented to Columbia University/Morgan Stanley Children’s Hospital of New York with a CPP in the atrium of the lateral ventricle and who underwent surgery using a su- perior parietal lobule approach without preoperative embolization. RESULTS Nine children were included, with a median age of 7 months. There were no perioperative complications or new neurological deficits. All patients had intraoperative blood loss of less than 100 ml, with a mean minimum hematocrit of 26.9% (range 19.6%–36.2%). No patients required a blood transfusion. -
Adult Isocitrate Dehydrogenase–Mutant Brainstem Glioma: Illustrative Case
J Neurosurg Case Lessons 1(12):CASE2078, 2021 DOI: 10.3171/CASE2078 Adult isocitrate dehydrogenase–mutant brainstem glioma: illustrative case *Vincent C. Ye, MD,1 Alexander P. Landry, MD,1 Teresa Purzner, MD, PhD,1 Aristotelis Kalyvas, MD,1 Nilesh Mohan, MD,1 Philip J. O’Halloran, MD, PhD,1 Andrew Gao, MD,2 and Gelareh Zadeh, MD, PhD1,3 1Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; 2Department of Pathology, University Health Network, Toronto, Ontario, Canada; and 3Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada BACKGROUND Adult brainstem gliomas are rare entities that demonstrate heterogeneous biology and appear to be distinct from both their pediatric counterparts and adult supratentorial gliomas. Although the role of histone 3 mutations is being increasingly understood in this disease, the effectof isocitrate dehydrogenase (IDH) mutations remains unclear, largely because of limited data. OBSERVATIONS The authors present the case of a 29-year-old male with an IDH1-mutant, World Health Organization grade III anaplastic astrocytoma in the dorsal medulla, and they provide a review of the available literature on adult IDH-mutant brainstem glioma. The authors have amassed a cohort of 15 such patients, 7 of whom have survival data available. Median survival is 56 months in this small cohort, which is similar to that for IDH wild-type adult brainstem gliomas. LESSONS The authors’ work reenforces previous literature suggesting that the role of IDH mutation in glioma differs between brainstem and supratentorial lesions. Therefore, the authors advocate that adult brainstem gliomas be studied in terms of major molecular subgroups (including IDH mutant) because these gliomas may exhibit fundamental differences from each other, from pediatric brainstem gliomas, and from adult supratentorial gliomas. -
Epidemiology and Survival of Patients with Brainstem Gliomas: a Population-Based Study Using the SEER Database
ORIGINAL RESEARCH published: 11 June 2021 doi: 10.3389/fonc.2021.692097 Epidemiology and Survival of Patients With Brainstem Gliomas: A Population-Based Study Using the SEER Database † † Huanbing Liu 1 , Xiaowei Qin 1 , Liyan Zhao 2, Gang Zhao 1* and Yubo Wang 1* 1 Department of Neurosurgery, First Hospital of Jilin University, Changchun, China, 2 Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China Background: Brainstem glioma is a primary glial tumor that arises from the midbrain, Edited by: pons, and medulla. The objective of this study was to determine the population-based Yaohua Liu, epidemiology, incidence, and outcomes of brainstem gliomas. Shanghai First People’s Hospital, China Methods: The data pertaining to patients with brainstem gliomas diagnosed between Reviewed by: 2004 and 2016 were extracted from the SEER database. Descriptive analyses were Kristin Schroeder, conducted to evaluate the distribution and tumor-related characteristics of patients with Duke Cancer Institute, United States Gerardo Caruso, brainstem gliomas. The possible prognostic indicators were analyzed by Kaplan-Meier University Hospital of Policlinico G. curves and a Cox proportional hazards model. Martino, Italy *Correspondence: Results: The age-adjusted incidence rate was 0.311 cases per 100,000 person-years Gang Zhao between 2004 and 2016. A total of 3387 cases of brainstem gliomas were included in our [email protected] study. Most of the patients were white and diagnosed at 5-9 years of age. The most Yubo Wang [email protected] common diagnosis confirmed by histological review was ependymoma/anaplastic †These authors have contributed ependymoma. The median survival time was 24 months. -
Sv4oearly Region and Large T Antigen in Human Brain Tumors
ICANCER RESEARCH56. 4820-4825. October 5. 1996j SV4O Early Region and Large T Antigen in Human Brain Tumors, Peripheral Blood Cells, and Sperm Fluids from Healthy Individuals' Fernanda Martini, Laura Iacchen, Lorena Lazzarin, Paolo Carinci, Aifredo Corallini, Massimo Gerosa, Paolo luzzolino, Giuseppe Barbanti-Brodano, and Mauro Tognon2 Institute of Histology and General Embryology. (F. M., L 1., L L, P. C.. M. TI, Interdepartment Center for Biotechnology (L I., A. C.. C. B-B., M. TI, and institute of Microbiology (A. C.. G. B-B.]. School of Medicine, Unis'ersitv of Ferrara. Via Fossato di Mortara 64/B, 44100 Ferrara, italy; Department of Neurosurgery. University of Verona (M. G.]. and Pathological Anatomy Sers'ice,Geriatric Hospital of Verona(P. 1.], 37100 Verona.Italy ABSTRACT tected in human brain tumors and in normal brain tissue by Southern blotting and PCR (4—7).JCV sequences were found associated with SV4OT antigen (Tag) coding sequences were detected by PCR ampli normal brain tissue (6) but were not detected in brain tumors in two fication followed by Southern blot hybridization in human brain tumors different investigations (4, 5). Recently, SV4O sequences were de and tumor cell lines, as well as in peripheral blood cells and sperm flUids tected by PCR in ependymomas and choroid plexus papillomas of of healthy donors. SV4Oearly region sequences were found in 83% of choroid plexus papillomas, 73% of ependymomas, 47% of astrocytomas, childhood, as well as in other brain tumors, and in pleural mesothe 33% of glioblastoma multiforme cases,14% of meningiomas,50% of liomas (8—10).SV4O is an infectious agent for monkeys and does not glioblastoma cell lines, and 33% of astrocytoma cell lines and in 23% of normally infect humans. -
Idiopathic Intracranial Hypertension: Any Light on the Mechanism of the Raised Pressure?
J Neurol Neurosurg Psychiatry 2001;71:1–7 1 EDITORIAL Idiopathic intracranial hypertension: any light on the mechanism of the raised pressure? Everyone knows that no one knows the mechanism of the compensatory processes are no longer functioning. Thus increase of intracranial pressure in idiopathic intracranial an increase in cerebral volume with an equivalent hypertension (IIH; also called pseudotumour cerebri; see reduction in CSF volume will obviously not change the table 1 for diagnostic criteria). Does it much matter? After status quo. Over the years investigational techniques of all, for most aVected people IIH is a benign, self limiting every imaginable degree of complexity and invasiveness condition. However, sometimes it is not,1 and current have been used to explore these possibilities in IIH. Many therapies are unsatisfactory. Medical treatment is poor and of the relevant indices such as CSF formation rate, CSF of unproved benefit.23 Surgical interventions (optic nerve outflow resistance, CSF outflow rate, and sagittal sinus sheath fenestration, lumboperitoneal shunting) have ap- pressure can be measured or calculated, but some of the preciable hazards and failure rates.4–10 Moreover, the techniques used require certain assumptions and are mechanism of increase in intracranial pressure in IIH therefore possibly fallible. Particular diYculties exist in might have relevance to raised intracranial pressure and its knowing to what extent the brain is compressible in management in other situations such as meningitis and response to increasing CSF pressure, and to what extent hydrocephalus. the CSF space is expandable. These factors influence CSF outflow resistance calculations in infusion or perfusion Normal intracranial pressure studies. -
Recent Advances in the Treatment of Gliomas – Comprehensive Brain Tumor Center
RECENT ADVANCES IN NEUROSURGERY Recent Advances in the Treatment of Gliomas – Comprehensive Brain Tumor Center STEVEN A. TOMS, MD, MPH; NIKOLAOS TAPINOS, MD, PhD ABSTRACT development of electric current loco-regional antimitotic Gliomas are a class of primary brain tumors arising from therapy (“tumor-treating fields”) led to the first reported the supporting structures of the brain, the astrocytes and survivals exceeding 20 months7. oligodendrocytes, which range from benign lesions to In the United States alone, 12,000 new cases of GBM are its most malignant form, the glioblastoma. Treatment diagnosed each year8. One reason cited for the failure to for these lesions includes maximal surgical resection, improve survival has been the presence of a robust blood- radiotherapy, and chemotherapy. Recently, novel thera- brain barrier within the tumor, which impedes delivery of pies such as immune modulatory therapies and electrical traditional cytotoxic and novel molecular therapies9. Most field treatment of the most malignant form, the glioblas- chemotherapeutic agents are hydrophilic, and do not pene- toma, have shown promise in improving survival. We trate the blood brain barrier well. Attempts to deliver che- will review recent advances in clinical trials, explore the motherapeutic molecules into the brain have included both role of multimodal care in brain tumor therapy, as well osmotic, chemical, and ultrasound mediated opening of the as explore advances in molecular biology and nanotech- blood brain barrier to improve drug delivery, but none have nology which offer new hope for treatment of this class improved clinical outcomes10. A novel method to bypass of disease. this barrier, (i.e., convection enhanced delivery), met with KEYWORDS: glioblastoma, immunotherapy, tumor success in delivering high drug concentrations of hydro- treating fields, nanotechnology, drug delivery philic drugs to brain tumors and led to several clinical trials. -
The Historical Change of Brainstem Glioma Diagnosis and Treatment
Zhang et al. Chinese Neurosurgical Journal (2015) 1:4 DOI 10.1186/s41016-015-0006-3 REVIEW Open Access The historical change of brainstem glioma diagnosis and treatment: from imaging to molecular pathology and then molecular imaging Liwei Zhang1,2,3*, Chang-cun Pan1,2,3 and Deling Li1,2 Abstract Understanding a process from shallow to deep is necessary for controlling and even curing diseases. The history of diagnosis and treatment of brainstem gliomas vividly reflects this process. The development of neuroimaging plays a great role in tumor treatment at different periods, including the period when brainstem gliomas were regarded as an homogenous incurable disease, and currently it is considered as an entity with high heterogeneity. Presently, it is not enough to just rely on the conventional neuroimaging techniques to determine the anatomic location of a tumor and its relationship with normal tissues. The development of molecular genetics and molecular imaging further promotes the progress of individualized and precision diagnosis and treatment in brainstem gliomas. In this paper, we summarize the evolution of brainstem glioma radiological classification mainly focusing on the aspects of imaging and surgical treatment. In the meanwhile, we reviewed the recent progresses in the fields of molecular genetics and molecular imaging. Keywords: Brainstem gliomas, Microsurgery, Radiological classification, Molecular genetics, Molecular imaging Introduction caused by hydrocephalus and failure to thrive. After total The breakthrough of the “no man’s land” resection, patients can achieve a relatively long survival In the 1960s, the brainstem was still the forbidden region without routine postoperative radiotherapy, and most re- for surgery, and the mortality rate of operation on brain- sidual tumors are stable.