Intraventricular Mass Lesions at Magnetic Resonance Imaging: Iconographic Essay – Part 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Choroid Plexus Papilloma Causing CSF Shunt Ascites: a Rare Presentation
Case Report Annals of Clinical Case Reports Published: 13 Jun, 2017 Choroid Plexus Papilloma Causing CSF Shunt Ascites: A Rare Presentation Deepak Sachan* Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital,New Delhi, India Abstract Choroid Plexus Papillomas (CPPs) are congenital intracranial tumors of neuro-ectodermal origin. Choroid plexus neoplasms constitute about 0.5% of all intracranial neoplasms.Majority are found in lateral ventricles. Most of these neoplasms are benign papillomas, while one-fifth are malignant carcinomas. The present communication describes a rare case of a choroid plexus papilloma leading to CSF ascites following Ventriculoperitoneal (VP) shunt. Case Presentation A 5 year old boy presented to us with complaints of progressively increasing abdominal distension from past 6 months and respiratory distress for 2 days. There was no history of jaundice or bleeding manifestations. Patient was a known case of hydrocephalus for which medium pressure VP shunt (chabra shunt) was placed at the age of 3 years. On examination child was having massive ascitis with positive fluid thrill sign. There was no hepato-spenomegaly and other signs of hepatocellular failure. Neurologically the child was conscious and oriented and there were no signs of shunt dysfunction. Shunt bulb was palpable and soon gets refilled after compressing the bulb. Paracentesis showed clear transudate fluid with no evidence of infection (WBC= 5 cells/mm3, all lymphocytes, sugar = 72 mg/dl and protein = 24 mg/dl). Ascitic fluid culture was sterile and was negative for Acid fast bacilli. In addition, cytology was negative for malignant cell. Liver and renal function test were essentially normal (serum bilirubin = 0.6 mg/dl, SGOT = 36 U/I, SGPT = 11 U/I, serum albumin = 3.8 gm/dl, urea = 27 mg/dl, creatine = 0.8 mg/dl). -
Charts Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart
Charts Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart Glial Tumor Neuronal and Neuronal‐ Ependymomas glial Neoplasms Subependymoma Subependymal Giant (9383/1) Cell Astrocytoma(9384/1) Myyppxopapillar y Desmoplastic Infantile Ependymoma Astrocytoma (9412/1) (9394/1) Chart 1: Benign and Borderline Intracranial and CNS Tumors Chart Glial Tumor Neuronal and Neuronal‐ Ependymomas glial Neoplasms Subependymoma Subependymal Giant (9383/1) Cell Astrocytoma(9384/1) Myyppxopapillar y Desmoplastic Infantile Ependymoma Astrocytoma (9412/1) (9394/1) Use this chart to code histology. The tree is arranged Chart Instructions: Neuroepithelial in descending order. Each branch is a histology group, starting at the top (9503) with the least specific terms and descending into more specific terms. Ependymal Embryonal Pineal Choro id plexus Neuronal and mixed Neuroblastic Glial Oligodendroglial tumors tumors tumors tumors neuronal-glial tumors tumors tumors tumors Pineoblastoma Ependymoma, Choroid plexus Olfactory neuroblastoma Oligodendroglioma NOS (9391) (9362) carcinoma Ganglioglioma, anaplastic (9522) NOS (9450) Oligodendroglioma (9390) (9505 Olfactory neurocytoma Ganglioglioma, malignant (()9521) anaplastic (()9451) Anasplastic ependymoma (9505) Olfactory neuroepithlioma Oligodendroblastoma (9392) (9523) (9460) Papillary ependymoma (9393) Glioma, NOS (9380) Supratentorial primitive Atypical EdEpendymo bltblastoma MdllMedulloep ithliithelioma Medulloblastoma neuroectodermal tumor tetratoid/rhabdoid (9392) (9501) (9470) (PNET) (9473) tumor -
Paraganglioma (PGL) Tumors in Patients with Succinate Dehydrogenase-Related PCC–PGL Syndromes: a Clinicopathological and Molecular Analysis
T G Papathomas and others Non-PCC/PGL tumors in the SDH 170:1 1–12 Clinical Study deficiency Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC–PGL syndromes: a clinicopathological and molecular analysis Thomas G Papathomas1, Jose Gaal1, Eleonora P M Corssmit2, Lindsey Oudijk1, Esther Korpershoek1, Ketil Heimdal3, Jean-Pierre Bayley4, Hans Morreau5, Marieke van Dooren6, Konstantinos Papaspyrou7, Thomas Schreiner8, Torsten Hansen9, Per Arne Andresen10, David F Restuccia1, Ingrid van Kessel6, Geert J L H van Leenders1, Johan M Kros1, Leendert H J Looijenga1, Leo J Hofland11, Wolf Mann7, Francien H van Nederveen12, Ozgur Mete13,14, Sylvia L Asa13,14, Ronald R de Krijger1,15 and Winand N M Dinjens1 1Department of Pathology, Josephine Nefkens Institute, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands, 2Department of Endocrinology, Leiden University Medical Center, Leiden,The Netherlands, 3Section for Clinical Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway, 4Department of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands, 5Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands, 6Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands, 7Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, 8Section for Specialized Endocrinology, -
Choroid Plexus Papilloma Arising from the Temporal Horn with a Bilateral Hypersecretory Hydrocephalus: a Case Report and Review of Literature
Elmer ress Case Report World J Oncol. 2016;7(2-3):51-56 Choroid Plexus Papilloma Arising From the Temporal Horn With a Bilateral Hypersecretory Hydrocephalus: A Case Report and Review of Literature Sureswar Mohantya, Suman Saurav Routb, d, Gouri Sankar Sarangia, Kumudini Devic Abstract occur in the third ventricle. These tumors are benign histologi- cally and are neuroectodermal in origin and assigned a WHO Cerebrospinal fluid (CSF) within the cerebral ventricular system is grade I. Complete or gross total resection of these tumors often secreted by a neuroepithelial tissue which is called as the choroid results in a cure and almost recurrence free survival. The spe- plexus. Tumors arising from these tissues are rare. Choroid plexus cial challenges in the management of these tumors are mostly papillomas (CPPs) have been denoted as WHO grade I of the cho- due to its several unique features which include the young age roid plexus tumors. Among the intracranial tumors, neoplasms of the at presentation, high vascularity of these tumors and the poten- choroid plexus constitute around 0.36-0.6%. CPPs are mostly slow tial for hypersecretion of CSF. growing and cause symptoms due to mass effect and obstructive hy- drocephalus, resulting in increased intracranial pressure. We report a Case Report case of CPP arising from the temporal horn in a 7-year-old girl pre- senting with progressive head enlargement since birth due to bilateral massive hydrocephalus without any obstruction, making it purely a A 7-year-old girl presented with progressive head enlargement hypersecretory hydrocephalus. A drainage procedure followed by since birth, features of raised intracranial pressure in the form complete tumor resection was carried out in our case and the patient of headache, vomiting, excessive crying and excessive drowsi- showed marked relief from her symptoms. -
University of California, Irvine
UNIVERSITY OF CALIFORNIA, IRVINE Demystifying the Choroid Plexus THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Biomedical Engineering by Esmeralda Romero Lorenzo Thesis Committee: Professor Edwin Monuki, Chair Professor Michelle Digman Professor Wendy Liu 2020 © 2020 Esmeralda Romero Lorenzo TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES v ABSTRACT vii CHAPTER 1: Introduction 1 1.1 The Choroid Plexus and Its functional Role in the Brain 1 1.2 Clinical Significance 3 CHAPTER 2: Choroid Plexus Overview 5 2.1 Anatomy of the Choroid Plexus 5 2.2 Choroid Plexus Epithelial Cells 6 2.3 Choroid Plexus Epithelial Cell Proteins 6 2.3.1 Transthyretin 6 2.3.2 Aquaporin 1 7 2.3.3 ZO-1 8 CHAPTER 3: TTR:tdTomato CPEC Reporter Mouse Culture 9 3.1 TTR:tdTomato Reporter Mouse Characteristics 9 3.2 Methods to Evaluate TTR:tdTomato CPEC Reporter Mouse Line 10 3.2.1. Determining Homozygosity 10 3.2.2 Dissection and Imaging 11 3.3 TTR:tdTomato Reporter Mouse Results 11 CHAPTER 4: Choroid Plexus Epithelial Cell Heterogeneity in vitro 12 4.1 Cell Morphology Heterogeneity in vitro 12 4.2 Methods to Study Heterogeneity in vitro 12 4.2.1 Dissection and Cell Culture 13 4.2.2 Immunohistochemistry 13 4.3 Results 13 4.3.1 Nucleus Size in vitro 14 4.3.2 Cell Morphology 15 4.3.3 Cell Nuclear-Cytoplasmic Ratio 15 4.4 Summary and Future Work 19 CHAPTER 5: CPEC Protein Expression 21 5.1 Heterogeneity in CPEC Protein Expression Heterogeneity 21 5.2 Cell Expression Heterogeneity Methods 21 5.2.1 Dissection and Cell -
Choroid Plexus Tumors: a Review
UC San Diego UC San Diego Previously Published Works Title Perinatal (fetal and neonatal) choroid plexus tumors: a review. Permalink https://escholarship.org/uc/item/0sm7q5q7 Journal Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery, 35(6) ISSN 0256-7040 Authors Crawford, John R Isaacs, Hart Publication Date 2019-06-01 DOI 10.1007/s00381-019-04135-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California Child's Nervous System (2019) 35:937–944 https://doi.org/10.1007/s00381-019-04135-x REVIEW ARTICLE Perinatal (fetal and neonatal) choroid plexus tumors: a review John R. Crawford1,2,3 & Hart Isaacs Jr3,4 Received: 13 September 2018 /Accepted: 20 March 2019 /Published online: 5 April 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Introduction The object of this review is to describe the choroid plexus tumors (CPTs) occurring in the fetus and neonate with regard to clinical presentation, location, pathology, treatment, and outcome. Materials and methods Case histories and clinical outcomes were reviewed from 93 cases of fetal and neonatal tumors obtained from the literature and our own institutional experience from 1980 to 2016. Results Choroid plexus papilloma (CPP) is the most common tumor followed by choroid plexus carcinoma (CPC) and atypical choroid plexus papilloma (ACPP). Hydrocephalus and macrocephaly are the presenting features for all three tumors. The lateral ventricles are the main site of tumor origin followed by the third and fourth ventricles, respectively. CPTs of the fetus are detected most often near the end of the third trimester of pregnancy by fetal ultrasound. -
Central Neurocytoma SNP Array Analyses, Subtel FISH, and Review
Pathology - Research and Practice 215 (2019) 152397 Contents lists available at ScienceDirect Pathology - Research and Practice journal homepage: www.elsevier.com/locate/prp Case report Central neurocytoma: SNP array analyses, subtel FISH, and review of the T literature Caroline Sandera,1, Marco Wallenborna,b,1, Vivian Pascal Brandtb, Peter Ahnertc, Vera Reuscheld, ⁎ Christan Eisenlöffele, Wolfgang Kruppa, Jürgen Meixensbergera, Heidrun Hollandb, a Dept. of Neurosurgery, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany b Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal Str. 55, 04103 Leipzig, Germany c Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstraße 16-18, 04107 Leipzig, Germany d Dept. of Neuroradiology, University of Leipzig, Liebigstraße 22a, 04103 Leipzig, Germany e Dept. of Neuropathology, University of Leipzig, Liebigstraße 26, 04103 Leipzig, Germany ARTICLE INFO ABSTRACT Keywords: The central neurocytoma (CN) is a rare brain tumor with a frequency of 0.1-0.5% of all brain tumors. According Central neurocytoma to the World Health Organization classification, it is a benign grade II tumor with good prognosis. However, Cytogenetics some CN occur as histologically “atypical” variant, combined with increasing proliferation and poor clinical SNP array outcome. Detailed genetic knowledge could be helpful to characterize a potential atypical behavior in CN. Only FISH few publications on genetics of CN exist in the literature. Therefore, we performed cytogenetic analysis of an intraventricular neurocytoma WHO grade II in a 39-year-old male patient by use of genome-wide high-density single nucleotide polymorphism array (SNP array) and subtelomere FISH. Applying these techniques, we could detect known chromosomal aberrations and identified six not previously described chromosomal aberrations, gains of 1p36.33-p36.31, 2q37.1-q37.3, 6q27, 12p13.33-p13.31, 20q13.31-q13.33, and loss of 19p13.3-p12. -
Superior Parietal Lobule Approach for Choroid Plexus Papillomas Without Preoperative Embolization in Very Young Children
PEDIATRICS CLINICAL ARTICLE J Neurosurg Pediatr 16:101–106, 2015 Superior parietal lobule approach for choroid plexus papillomas without preoperative embolization in very young children Benjamin C. Kennedy, MD,1 Michael B. Cloney, BA,1 Richard C. E. Anderson, MD,1,2 and Neil A. Feldstein, MD1,2 1Department of Neurological Surgery and 2Children’s Hospital of New York, Columbia University, New York, New York OBJECT Choroid plexus papillomas (CPPs) are rare neoplasms, often found in the atrium of the lateral ventricle of infants, and cause overproduction hydrocephalus. The extensive vascularity and medially located blood supply of these tumors, coupled with the young age of the patients, can make prevention of blood loss challenging. Preoperative emboli- zation has been advocated to reduce blood loss and prevent the need for transfusion, but this mandates radiation expo- sure and the additional risks of vessel injury and stroke. For these reasons, the authors present their experience using the superior parietal lobule approach to CPPs of the atrium without adjunct therapy. METHODS A retrospective review was conducted of all children who presented to Columbia University/Morgan Stanley Children’s Hospital of New York with a CPP in the atrium of the lateral ventricle and who underwent surgery using a su- perior parietal lobule approach without preoperative embolization. RESULTS Nine children were included, with a median age of 7 months. There were no perioperative complications or new neurological deficits. All patients had intraoperative blood loss of less than 100 ml, with a mean minimum hematocrit of 26.9% (range 19.6%–36.2%). No patients required a blood transfusion. -
A Case of Mushroom‑Shaped Anaplastic Oligodendroglioma Resembling Meningioma and Arteriovenous Malformation: Inadequacies of Diagnostic Imaging
EXPERIMENTAL AND THERAPEUTIC MEDICINE 10: 1499-1502, 2015 A case of mushroom‑shaped anaplastic oligodendroglioma resembling meningioma and arteriovenous malformation: Inadequacies of diagnostic imaging YAOLING LIU1,2, KANG YANG1, XU SUN1, XINYU LI1, MINGHAI WEI1, XIANG'EN SHI2, NINGWEI CHE1 and JIAN YIN1 1Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044; 2Department of Neurosurgery, Affiliated Fuxing Hospital, The Capital University of Medical Sciences, Beijing 100038, P.R. China Received December 29, 2014; Accepted June 29, 2015 DOI: 10.3892/etm.2015.2676 Abstract. Magnetic resonance imaging (MRI) is the most tomas (WHO IV) (2). The median survival times of patients widely discussed and clinically employed method for the with WHO II and WHO III oligodendrogliomas are 9.8 and differential diagnosis of oligodendrogliomas; however, 3.9 years, respectively (1,2), and 6.3 and 2.8 years, respec- MRI occasionally produces unclear results that can hinder tively, if mixed with astrocytes (3,4). Surgical excision and a definitive oligodendroglioma diagnosis. The present study postoperative adjuvant radiotherapy is the traditional therapy describes the case of a 34-year-old man that suffered from for oligodendroglioma; however, studies have observed that, headache and right upper‑extremity weakness for 2 months. among intracranial tumors, anaplastic oligodendrogliomas Based on the presurgical evaluation, it was suggested that the are particularly sensitive to chemotherapy, and the prognosis patient had a World Health Organization (WHO) grade II-II of patients treated with chemotherapy is more favorable glioma, meningioma or arteriovenous malformation (AVM), than that of patients treated with radiotherapy (5‑7). -
The New WHO Classification of Brain Tumors and Molecular Profiling in the Diagnosis of Gliomas
The New WHO Classification of Brain Tumors and Molecular Profiling in the Diagnosis of Gliomas Aivi Nguyen, MD Neuropathology Fellow Division of Neuropathology Center for Personalized Diagnosis (CPD) Glial neoplasms – infiltrating gliomas Astrocytic tumors • Diffuse astrocytoma II • Anaplastic astrocytoma III • Glioblastoma • Giant cell glioblastoma IV • Gliosarcoma Oligodendroglial tumors • Oligodendroglioma II • Anaplastic oligodendroglioma III Oligoastrocytic tumors • Oligoastrocytoma II • Anaplastic oligoastrocytoma III Courtesy of Dr. Maria Martinez-Lage 2 2016 3 The 2016 WHO classification of tumours of the central nervous system Louis et al., Acta Neuropathologica 2016 4 Talk Outline Genetic, epigenetic and metabolic changes in gliomas • Mechanisms/tumor biology • Incorporation into daily practice and WHO classification Penn’s Center for Personalized Diagnostics • Tests performed • Results and observations to date Summary 5 The 2016 WHO classification of tumours of the central nervous system Louis et al., Acta Neuropathologica 2016 6 Mechanism of concurrent 1p and 19q chromosome loss in oligodendroglioma lost FUBP1 CIC Whole-arm translocation Griffin et al., Journal of Neuropathology and Experimental Neurology 2006 7 Oligodendroglioma: 1p19q co-deletion Since the 1990s Diagnostic Prognostic Predictive Li et al., Int J Clin Exp Pathol 2014 8 Mutations of Selected Genes in Glioma Subtypes GBM Astrocytoma Oligodendroglioma Oligoastrocytoma Killela et al., PNAS 2013 9 Escaping Senescence Telomerase reverse transcriptase gene -
Malignant CNS Solid Tumor Rules
Malignant CNS and Peripheral Nerves Equivalent Terms and Definitions C470-C479, C700, C701, C709, C710-C719, C720-C725, C728, C729, C751-C753 (Excludes lymphoma and leukemia M9590 – M9992 and Kaposi sarcoma M9140) Introduction Note 1: This section includes the following primary sites: Peripheral nerves C470-C479; cerebral meninges C700; spinal meninges C701; meninges NOS C709; brain C710-C719; spinal cord C720; cauda equina C721; olfactory nerve C722; optic nerve C723; acoustic nerve C724; cranial nerve NOS C725; overlapping lesion of brain and central nervous system C728; nervous system NOS C729; pituitary gland C751; craniopharyngeal duct C752; pineal gland C753. Note 2: Non-malignant intracranial and CNS tumors have a separate set of rules. Note 3: 2007 MPH Rules and 2018 Solid Tumor Rules are used based on date of diagnosis. • Tumors diagnosed 01/01/2007 through 12/31/2017: Use 2007 MPH Rules • Tumors diagnosed 01/01/2018 and later: Use 2018 Solid Tumor Rules • The original tumor diagnosed before 1/1/2018 and a subsequent tumor diagnosed 1/1/2018 or later in the same primary site: Use the 2018 Solid Tumor Rules. Note 4: There must be a histologic, cytologic, radiographic, or clinical diagnosis of a malignant neoplasm /3. Note 5: Tumors from a number of primary sites metastasize to the brain. Do not use these rules for tumors described as metastases; report metastatic tumors using the rules for that primary site. Note 6: Pilocytic astrocytoma/juvenile pilocytic astrocytoma is reportable in North America as a malignant neoplasm 9421/3. • See the Non-malignant CNS Rules when the primary site is optic nerve and the diagnosis is either optic glioma or pilocytic astrocytoma. -
Sv4oearly Region and Large T Antigen in Human Brain Tumors
ICANCER RESEARCH56. 4820-4825. October 5. 1996j SV4O Early Region and Large T Antigen in Human Brain Tumors, Peripheral Blood Cells, and Sperm Fluids from Healthy Individuals' Fernanda Martini, Laura Iacchen, Lorena Lazzarin, Paolo Carinci, Aifredo Corallini, Massimo Gerosa, Paolo luzzolino, Giuseppe Barbanti-Brodano, and Mauro Tognon2 Institute of Histology and General Embryology. (F. M., L 1., L L, P. C.. M. TI, Interdepartment Center for Biotechnology (L I., A. C.. C. B-B., M. TI, and institute of Microbiology (A. C.. G. B-B.]. School of Medicine, Unis'ersitv of Ferrara. Via Fossato di Mortara 64/B, 44100 Ferrara, italy; Department of Neurosurgery. University of Verona (M. G.]. and Pathological Anatomy Sers'ice,Geriatric Hospital of Verona(P. 1.], 37100 Verona.Italy ABSTRACT tected in human brain tumors and in normal brain tissue by Southern blotting and PCR (4—7).JCV sequences were found associated with SV4OT antigen (Tag) coding sequences were detected by PCR ampli normal brain tissue (6) but were not detected in brain tumors in two fication followed by Southern blot hybridization in human brain tumors different investigations (4, 5). Recently, SV4O sequences were de and tumor cell lines, as well as in peripheral blood cells and sperm flUids tected by PCR in ependymomas and choroid plexus papillomas of of healthy donors. SV4Oearly region sequences were found in 83% of choroid plexus papillomas, 73% of ependymomas, 47% of astrocytomas, childhood, as well as in other brain tumors, and in pleural mesothe 33% of glioblastoma multiforme cases,14% of meningiomas,50% of liomas (8—10).SV4O is an infectious agent for monkeys and does not glioblastoma cell lines, and 33% of astrocytoma cell lines and in 23% of normally infect humans.