Hydrogeochemistry of Dripwaters in Selected Caves of Moravian Karst Ph D Dissertation
Total Page:16
File Type:pdf, Size:1020Kb
MASARYK UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF GEOLOGICAL SCIENCES Hydrogeochemistry of Dripwaters in Selected Caves of Moravian Karst Ph D Dissertation Pavel. Pracný SUPERVISOR: DOC. ING. JIŘÍ FAIMON, DR. BRNO 2017 BIBLIOGRAPHIC ENTRY Author Mgr. Pavel Pracný Faculty of Science, Masaryk University Department of Geological Sciences Title of Dissertation Hydrogeochemistry of Dripwaters in Selected Caves of Moravian Karst Degree Programme Geology Field of Study Geological Sciences Supervisor doc. Ing. Jiří Faimon, Dr. Faculty of Science, Masaryk University, Department of Geological Sciences Faculty of Science, Palacký University, Department of Geology Academic Year 2016/2017 Number of Pages 53+65 Keywords Cave dripwater; Moravian Karst; Anomalous drip; Car- bon dioxide; Mg/Ca ratio; Kinetic modeling; Limestone dissolution; Degassing; Mg-calcite BIBLIOGRAFICKÝ ZÁZNAM Autor Mgr. Pavel Pracný Přírodovědecká fakulta, Masarykova univerzita Ústav geologických věd Název práce Hydrogeochemie skapových vod ve vybraných jeskyních Moravského krasu Studijní program Geologie Studijní obor Geologické vědy Školitel doc. Ing. Jiří Faimon, Dr. Přírodovědecká fakulta, Masarykova univerzita, Ústav geologických věd Přírodovědecká fakulta, Univerzita Palackého, Katedra geologie Akademický rok 2016/2017 Počet stran 53+65 Klíčová slova Skapové vody; Moravský kras; Anomální skap; Oxid uhličitý; Poměr Mg/Ca; Kinetické modelování; Rozpouštění vápenců; Odplyňování; Mg-kalcit ABSTRACT Karst dripwaters are an important factor of speleothem formation. These cave precipitates provide various proxy data (e.g. stable isotopes, minor and trace elements or grow laminae) about paleoenvironment. To better under- stand the interrelationship between proxies and environment, an investigation of recent karst processes is important. A dripwater hydrogeochemistry and cave PCO2 were studied in the dry part of Punkva Caves (Moravian Karst). The sampling was conducted twice per month from February 2012 to March 2013. Additional dripwater samples for stable isotopes analyses were collected in April and November 2014. An anomalous drip was identified showing hydrogeochemical properties significantly different from other regular drips in the cave system as well as other caves in Moravian Karst. The anomalous drip showed a low SIcalcite ~ 0.14±0.11 (standard deviation), low specific conductivity 297±22.2 μS cm−1 and enhanced values of δ13C (−7.85 to −8.35‰ VPDB), Mg/Ca × 1000 ratio (45.7±3.3) and Sr/Ca × 1000 ratio (0.65±0.06). In contrast, the regular drips showed satu- ration SIcalcite in range from 0.83 to 1.07, high specific conductivity (604±32 μS cm−1) and lower Mg/Ca × 1000 (17.0±1.4) and Sr/Ca × 1000 (0.31±0.02) ratios as well as lower δ13C values (−10.34 to −10.94‰). The data analysis supports conclusion that the anomalous drip properties were a consequence of a prior calcite precipitation or/and water mixing. This idea is supported by the position of the drip on a crevice edge. The partial pressure of CO2 measured in cave air, PCO2(air), was in range from 10−3.31 to 10−2.49 (0.06–0.32 vol%). These values were compared to CO2 par- tial pressures calculated from dripwater hydrogeochemistry as a partial pres- sure of CO2 corresponding to aqueous carbonates, PCO2(W) (10−2.91 to 10−2.35 or 0.12–0.45 vol%), and hypothetical CO2 partial pressure participating on the in- itial dripwater formation, PCO2(H) (10−1.77 to 10−1.49 or 1.7–3.2 vol%). Both the PCO2(air) and PCO2(W) showed clear seasonal variations with maxima in summer and minima in winter. It seems that the cave air CO2 had been controlled by cave ventilation modes: the higher PCO2(air) were a result of a downward airflow mode during the period of active ventilation with increased influx of CO2 from epikarst and vadose zone. In contrast, the PCO2(H) was very stable without any significant seasonality indicating independence on seasonally changing surface conditions. It could mean that the source of CO2 is deployed deeper in karst profile under the soil. The anomalous drip represented an exception with lower and varying PCO2(W) and PCO2(H) close to PCO2(air) indicating prior CO2 degassing and calcite precipitation. A geochemical model of CO2 degassing shows that the regular dripwaters data are plotted along a degassing line with slope ~ −1 pointing to a unique value of PCO2(H) regardless of season. In addition, it shows that the anomalous drip data are much more scattered and estimated values of PCO2(H) are most probably incorrect due to previous calcite precipitation changing dripwater hydrochemical properties. The possibility of dripwater conversion into solution aggressive with re- spect to calcite due to anthropogenic CO2 influx into cave were studied in Výpustek Cave. The model showed that it is possible to reach sufficient cave CO2 concentrations during longer events with enhanced attendance (500 peo- ple). Ordinary guided tours (50 people, ca. 0.5 h) seem to be of inconsequential effect. A dynamic model of the Mg/Ca ratio theoretical evolution during lime- stone dissolution in epikarst (T = 10 °C, logPCO2 = –1.5) was designed. The lime- stone was modeled as a dolomite and Mg-calcite mix with various content ra- tios. Two distinct stages of the dissolution were observed: (a) an initial stage with stoichiometric release of Ca and Mg (congruent dissolution) and (b) an advanced stage beginning when the solution reached calcite saturation, char- acterized by a continuous release of Mg and concurrent Ca decrease due to cal- cite precipitation (incongruent dissolution). The overall Mg/Ca ratio evolution, represented by shape of dissolution reaction paths, is determined by the Mg- calcite composition and the ratio of Mg-calcite and dolomite (D/C). The dynam- ics of Mg-calcite dissolution dominates for all ratios under D/C = 1, when the reaction paths divert from pure Mg-calcite paths. A minor factor influencing the reaction path of Mg/Ca evolution was identified in the ratio of limestone surface to water volume ({L}/V). However, the {L}/V ratio controls overall inter- action dynamics. In epikarst, the dissolution dynamics is given by conditions of a system open to gaseous CO2, leading to enhanced epikarst dissolution. The ratio is probably higher deeper in vadose zone, but the dissolution is limited because the system is closed to CO2. The actual Mg/Ca ratio in dripwater de- pends on water residence time (i.e., water-rock interaction time) which controls how far the dissolution proceeds along the reaction path. Dripwaters from Punkva Caves and other sites over the world were compared with the model results. Most of the waters showed Mg/Ca ratios similar to reaction paths for Mg-calcite and low-dolomite limestone, whereas dripwaters from dolostone were similar to evolution during dissolution of pure dolomite. Both the difference in Mg/Ca ratios of the anomalous drip compared to regular drips and the Mg/Ca evolution model show the importance of water flow paths in dripwater formation. However, the water flow paths could change both temporally and spatially with the evolution of karst system, inde- pendently on climate conditions. In addition, the Mg-calcite composition and dissolution dynamics seem to play substantial role in dripwater Mg/Ca ratio evolution. Therefore, it is important to take these factors into consideration in paleoenvironmental studies of karst proxies. ABSTRAKT Krasové vody představují důležitý činitel při vzniku speleotém. Tyto jes- kynní sedimenty jsou významným zdrojem proxy dat (např. stabilní isotopy, stopové prvky, přírůstkové linie) o environmentálních podmínkách v době svého vzniku. Pro lepší pochopení vazeb mezi proxy daty a klimatem je důležité studium recentních krasových procesů. Hydrogeochemické vlastnosti skapo- vých vod a PCO2 v Punkevních jeskyních (Moravský kras) byly studovány dva- krát měsíčně od února 2012 do března 2013. Dodatečné vzorky pro izotopické analýzy byly odebrány v dubnu a listopadu 2014. V Punkevních jeskyních byl identifikován anomální skap s výrazně odliš- nými vlastnostmi ve srovnání s běžnými skapy v této i jiných jeskyních Morav- ského krasu. Anomální skap vykazuje nízké přesycení ke kalcitu SIcalcite ~ 0,14±0,11 (směrodatná odchylka) a nízkou specifickou vodivost 297±22,2 μS cm−1 a zvýšené hodnoty δ13C (−7,85 až −8,35 ‰ VPDB), poměru Mg/Ca × 1000 (45,7±3,3) a poměru Sr/Ca × 1000 (0,65±0,06). Běžné skapy vykazují hodnoty indexu nasycení SIcalcite rozmezí od 0,83 do 1,07, vysokou specifickou vodivost (604±32 μS cm−1) a nižší hodnoty δ13C (−10,34 to −10,94 ‰) a poměrů Mg/Ca × 1000 (17,0±1,4) a Sr/Ca × 1000 (0,31±0,02). Data naznačují, že vlastnosti ano- málního skapu jsou důsledkem předběžného srážení kalcitu a/nebo mixování vod v nadloží, což podporuje také pozice skapu na hraně komína. Praciální tlak CO2 v jeskynním vzduchu, PCO2(air), se pohyboval v rozmezí od 10−3,31 do 10−2,49 (0,06–0,32 obj. %). Tyto hodnoty byly porovnány s parciál- ními tlaky vypočítanými na základě hydrogeochemických vlastností skapových vod. Jsou to parciální tlak odpovídající obsahu karbonátů v roztoku, PCO2(W) (10−2,91 až 10−2,35, tj. 0,12–0,45 obj. %), a hypotetický parciální tlak podílející se na formování skapové vody, PCO2(H) (10−1,77 až 10−1,49, tj. 1,7–3,2 obj. %). Jak PCO2(air) tak i PCO2(W) vykazují jasnou sezónnost s maximy v létě a minimy v zimě. Toto chování je patrně dáno jeskynní ventilací: vyšší PCO2(air) je důsled- kem režimu sestupného proudění v období aktivní jeskynní ventilace se zvýše- ným přínosem CO2 z epikrasu a vadózní zóny. Naopak hodnoty PCO2(H) byly velmi stálé bez výraznější sezónnosti, což naznačuje významnou nezávislost na povrchových podmínkách a původ CO2 formujícího skapové vody ne v půdě, ale hlouběji v krasovém profilu. Anomální skap představuje významnou výjimku s výrazně nižším a variabilnějším PCO2(W) a hodnotami PCO2(H) blízko PCO2(air) což indikuje předběžné odplyňování CO2 a srážení kalcitu.