Oxidative Stress and Space Biology: an Organ-Based Approach

Total Page:16

File Type:pdf, Size:1020Kb

Oxidative Stress and Space Biology: an Organ-Based Approach International Journal of Molecular Sciences Books Oxidative Stress and Space Biology: An Organ-Based Approach Edited by Melpo Christofidou-Solomidou and Thomas J. Goodwin Printed Edition of the Special Issue Published in IJMS www.mdpi.com/journal/ijms MDPI Oxidative Stress and Space Biology: An Organ-Based Approach Special Issue Editors Melpo Christofidou-Solomidou Books Thomas J. Goodwin MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade MDPI Special Issue Editors Melpo Christofidou-Solomidou University of Pennsylvania Perelman School of Medicine USA Thomas J. Goodwin Infectious Disease Research Center Colorado State University USA Editorial Office MDPI St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal International Journal of Molecular Sciences (ISSN ISSN 2072-6651) in 2017–2018 (available at: http://www.mdpi.com/ Books journal/ijms/special issues/space biology 2016). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Lastname, F.M.; Lastname, F.M. Article title. Journal Name Year, Article number, page range. First Editon 2018 Cover photo courtesy of Melpo Christofidou-Solomidou. ISBN 978-3-03842-903-6 (Pbk) ISBN 978-3-03842-904-3 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). MDPI Table of Contents About the Special Issue Editors ..................................... v Preface to ”Oxidative Stress and Space Biology: An Organ-Based Approach” .......... vii Thomas J. Goodwin and Melpo Christofidou-Solomidou Oxidative Stress and Space Biology: An Organ-Based Approach doi: 10.3390/ijms19040959 ....................................... 1 Joshua S. Alwood, Luan H. Tran, Ann-Sofie Schreurs, Yasaman Shirazi-Fard, Akhilesh Kumar, Diane Hilton, Candice G. T. Tahimic and Ruth K. Globus Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System doi: 10.3390/ijms18102117 ....................................... 11 Srinivasan Shanmugarajan, Ye Zhang, Maria Moreno-Villanueva, Ryan Clanton, Larry H. Rohde, Govindarajan T. Ramesh, Jean D. Sibonga and Honglu Wu Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion doi: 10.3390/ijms18112443 ....................................... 28 Ye Tian, Xiaoli Ma, Chaofei Yang, Peihong Su, Chong Yin and Ai-Rong Qian The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment Books doi: 10.3390/ijms18102132 ....................................... 40 Candice G. T. Tahimic and Ruth K. Globus Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight doi: 10.3390/ijms18102153 ....................................... 49 Ken Takahashi, Hiroki Okumura, Rui Guo and Keiji Naruse Effect of Oxidative Stress on Cardiovascular System in Response to Gravity doi: 10.3390/ijms18071426 ....................................... 67 Elizabeth A. Blaber, Michael J. Pecaut and Karen R. Jonscher Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver doi: 10.3390/ijms18102062 ....................................... 76 Viktoria Anselm, Svetlana Novikova and Victor Zgoda Re-Adaption on Earth after Spaceflights Affects the Mouse Liver Proteome doi: 10.3390/ijms18081763 ....................................... 99 Jorge S. Burns and Gina Manda Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance doi: 10.3390/ijms18122755 .......................................111 Stefanie Endesfelder, Ulrike Weichelt, Evelyn Strauß, Anja Schl¨or, Marco Sifringer, Till Scheuer, Christoph B ¨uhrerand Thomas Schmitz Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury doi: 10.3390/ijms18010187 .......................................139 iii MDPI Anastasia Velalopoulou, Shampa Chatterjee, Ralph A. Pietrofesa, Cynthia Koziol-White, Reynold A. Panettieri, Liyong Lin, Stephen Tuttle, Abigail Berman, Constantinos Koumenis and Melpo Christofidou-Solomidou Synthetic Secoisolariciresinol Diglucoside (LGM2605) Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage doi: 10.3390/ijms18122525 .......................................163 Books iv MDPI About the Special Issue Editors Melpo Christofidou-Solomidou, PhD, Research Professor of Medicine, received her undergraduate degree in Biological Sciences from the State University of NY (S.U.N.Y.) at Stony Brook and her M.Sc. and Ph.D. in Cell Biology from the University of Bonn, in Germany. After completing post-doctoral training at Albany Medical College in NY, she joined the Pulmonary Division of the Department of Medicine at the University of Pennsylvania, in Philadelphia, where she serves currently. She is an NIH-funded investigator actively involved in preclinical and clinical studies at UPenn. Her research focus involves a) the investigation of novel antioxidant approaches to acute and chronic lung disease with a special interest in pulmonary inflammation and lung fibrosis related to radiation; b) chemoprevention of lung carcinogenesis and evaluation of anticarcinogenic effects of common botanicals and c) ischemia/reperfusion injury related to lung transplantation. Her research group at UPenn has been supported by research awards from the NIH (NCI, NIAID, NIEHS, NCCIH), NASA and other national agencies over the past 25 years and has published extensively in peer-reviewed journals. Thomas J. Goodwin, PhD— NASA cellular physiologist (Retired), pioneer and authority in 3D biology, tissue engineering, bioelectromagnetic field effects, and synthesized tissue growth. Dr. Goodwin was the Manager of the Disease Modeling and Tissue Analogues Laboratory at the NASA Johnson Books Space Center and Lead Scientist for the Oxidative Stress and Damage research discipline for more than 15 years. Dr. Goodwin is Honorary President and Chair of the Personalized Medicine panel of the European Society of Translational Medicine (EUSTM). He holds adjunct positions at the University of Texas Medical School, Galveston Texas, Dept. of Surgery, Division of Cardiothoracic Surgery, the University of Houston, Dept. of Health and Human Performance, and is an Adjunct Scientist at the Texas Biomedical Research Institute and the Southwest National Primate Research Center which is sponsored by the National Institutes of Health. He has authored or co-authored over 65 peer review articles, four book chapters on three-dimensional biology and personalized spaceflight medicine, has been awarded 23 U.S. patents, on 3D biology and human physiology, electromagnetic tissue effects, and is the recipient of more than 70 NASA Scientific and Technical awards. v MDPI Books MDPI Preface to ”Oxidative Stress and Space Biology: An Organ-Based Approach” Technological advances now allow the planning of deep space exploration missions with the aim to discover new habitats for humankind. The National Aeronautics and Space Administration (NASA) has spearheaded this effort and the research into the identification of risks to crew members associated with such lengthy missions. Exciting work from a multitude of investigators across the US, Europe and Japan have identified oxidative damage as a significant risk to major organs that could pose a threat to the health of the astronauts and the success of the mission. This Special Issue of IJMS is dedicated to providing a comprehensive overview of the identified risks and focus on how oxidative stress specifically could impact major organ systems when exposed to space-relevant conditions such as cosmic/galactic radiation, solar particle events, hypogravity, hyperoxia and hypoxia or a combination of stressors. Melpo Christofidou-Solomidou, Thomas J. Goodwin Special Issue Editors Books vii MDPI Books MDPI International Journal of Molecular Sciences Editorial Oxidative Stress and Space Biology: An Organ-Based Approach Thomas J. Goodwin 1,* and Melpo Christofidou-Solomidou 2,* 1 The National Aeronautics and Space Administration (NASA, retired) Johnson Space Center, Houston, TX 77058, USA 2 Division of Pulmonary, Allergy, and Critical Care Medicine and the Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Edward J. Stemmler Hall, 2nd Floor, Office Suite 227, Philadelphia, PA 19104, USA * Correspondence: [email protected] (T.J.G.); [email protected] (M.C.-S.); Tel.: +1-832-524-9651 (T.J.G.); +1-215-573-9917 (M.C.-S.); Fax: +1-215-573-4469 (M.C.-S.) Received: 2 March 2018; Accepted: 21 March 2018; Published: 23 March 2018 1. Introduction The environment of space provides many challenges to the human physiology and therefore to extended habitation and exploration. Research to define and countermeasures to address these challenges have been explored for well over 40 years yet success in alleviating these challenges has been inadequate, due in part to the lack of investigative tools (subject number and technology) Books to monitor and diagnose conditions in real time and by the overall lack of a relevant
Recommended publications
  • Additions and Deletions to the Drug Product List
    Prescription and Over-the-Counter Drug Product List 40TH EDITION Cumulative Supplement Number 09 : September 2020 ADDITIONS/DELETIONS FOR PRESCRIPTION DRUG PRODUCT LIST ACETAMINOPHEN; BUTALBITAL; CAFFEINE TABLET;ORAL BUTALBITAL, ACETAMINOPHEN AND CAFFEINE >A> AA STRIDES PHARMA 325MG;50MG;40MG A 203647 001 Sep 21, 2020 Sep NEWA ACETAMINOPHEN; CODEINE PHOSPHATE SOLUTION;ORAL ACETAMINOPHEN AND CODEINE PHOSPHATE >D> AA WOCKHARDT BIO AG 120MG/5ML;12MG/5ML A 087006 001 Jul 22, 1981 Sep DISC >A> @ 120MG/5ML;12MG/5ML A 087006 001 Jul 22, 1981 Sep DISC TABLET;ORAL ACETAMINOPHEN AND CODEINE PHOSPHATE >A> AA NOSTRUM LABS INC 300MG;15MG A 088627 001 Mar 06, 1985 Sep CAHN >A> AA 300MG;30MG A 088628 001 Mar 06, 1985 Sep CAHN >A> AA ! 300MG;60MG A 088629 001 Mar 06, 1985 Sep CAHN >D> AA TEVA 300MG;15MG A 088627 001 Mar 06, 1985 Sep CAHN >D> AA 300MG;30MG A 088628 001 Mar 06, 1985 Sep CAHN >D> AA ! 300MG;60MG A 088629 001 Mar 06, 1985 Sep CAHN ACETAMINOPHEN; HYDROCODONE BITARTRATE TABLET;ORAL HYDROCODONE BITARTRATE AND ACETAMINOPHEN >A> @ CEROVENE INC 325MG;5MG A 211690 001 Feb 07, 2020 Sep CAHN >A> @ 325MG;7.5MG A 211690 002 Feb 07, 2020 Sep CAHN >A> @ 325MG;10MG A 211690 003 Feb 07, 2020 Sep CAHN >D> AA VINTAGE PHARMS 300MG;5MG A 090415 001 Jan 24, 2011 Sep DISC >A> @ 300MG;5MG A 090415 001 Jan 24, 2011 Sep DISC >D> AA 300MG;7.5MG A 090415 002 Jan 24, 2011 Sep DISC >A> @ 300MG;7.5MG A 090415 002 Jan 24, 2011 Sep DISC >D> AA 300MG;10MG A 090415 003 Jan 24, 2011 Sep DISC >A> @ 300MG;10MG A 090415 003 Jan 24, 2011 Sep DISC >D> @ XIROMED 325MG;5MG A 211690
    [Show full text]
  • Neonatal Intensive Care Drug Therapy Update: a Bibliography
    LWW/JPNN AS310-13 July 28, 2004 23:11 Char Count= 0 J Perinat Neonat Nurs Vol. 18, No. 3, pp. 292–306 c 2004 Lippincott Williams & Wilkins, Inc. Neonatal Intensive Care Drug Therapy Update: A Bibliography Jason Sauberan, PharmD BIBLIOGRAPHY I. Overview A. Clark RH, Bloom BT, Gerstmann DR Medications Used in Neonatal Intensive Care Units—A Descriptive Study [abstract 3047]. In: Program and abstracts of the 2004 Pediatric Academic Societies’ Annual Meeting, San Francisco, CA. B. Barr J, Brenner-Zada G, Heiman E, Pareth G, Bulkowstein M, Greenberg R, Berkovitch M. Unlicensed and off-label medication use in a neonatal intensive care unit: a prospective study. Am J Perinatol. 2002 Feb;19(2):67–72. C. O’Donnell CP, Stone RJ, Morley CJ. Unlicensed and off-label drug use in an Australian neonatal intensive care unit. Pediatrics. 2002 Nov;110(5):e52. D. Committee on Drugs. American Academy of Pediatrics. Uses of drugs not described in the package insert (off-label uses). Pediatrics. 2002 Jul;110(1 Pt 1):181–3. II. Anti-infectives A. Linezolid 1. Deville JG, Adler S, Azimi PH, Jantausch BA, Morfin MR, Beltran S, Edge-Padbury B, Naberhuis-Stehouwer S, Bruss JB. Linezolid versus vancomycin in the treatment of known or suspected resistant gram-positive infections in neonates. Pediatr Infect Dis J. 2003 Sep;22(9 Suppl):S158–63. 2. Vo M, Cirincione BB, Rubino CM, Jungbluth GL. Pharmacokinetics of Linezolid in Neonates and Young Infants [abstract A-1409]. In: Program and abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA.
    [Show full text]
  • Sodium Butyrate Improves Antioxidant Stability in Sub-Acute Ruminal
    Ma et al. BMC Veterinary Research (2018) 14:275 https://doi.org/10.1186/s12917-018-1591-0 RESEARCH ARTICLE Open Access Sodium butyrate improves antioxidant stability in sub-acute ruminal acidosis in dairy goats Nana Ma†, Juma Ahamed Abaker†, Muhammad Shahid Bilal, Hongyu Dai and Xiangzhen Shen* Abstract Background: Currently, little is known about the effect of sodium butyrate (NaB) on oxidative stress following grain-induced sub-acute ruminal acidosis in dairy goats. In the present study, 18 lactating dairy goats implanted with a ruminal cannula and permanent indwelling catheters in the portal and hepatic veins were randomly allocated into 3 treatment groups over 20 weeks: low grain (LG, 40% grain; n = 6), high grain (HG, 60% grain; n =6) and high grain with sodium butyrate (HG + NaB, 60% grain + NaB; n = 6). Results: When added to the HG diet, NaB increased the mean ruminal pH and reduced the levels of ruminal, portal and hepatic LPS; Additionally, we observed an increase in SOD1, SOD2, SOD3, GPX1 and CAT mRNA expression, increased levels of TSOD and CAT enzyme activity as well as increased total antioxidant capacity (T-AOC) and decreased malondialdehyde (MDA) in both the liver and plasma, while GPx activity increased in the liver of goats fed the HG + NaB diet. The mRNA expression of UGT1A1, NQO1, MGST3, and Nrf2, as well as total Nrf2 protein levels were increased in goats fed the HG + NaB diet. Conclusions: Our study indicates that sodium butyrate could improve the oxidative status in sub-acute ruminal acidosis through the partial activation of Nrf2-dependent genes.
    [Show full text]
  • Application and Review of Pediatric Pharmacotherapy, Sample Chapter
    Application and Review of Pediatric Pharmacotherapy Chapter No. 1 Dated: 29/7/2010 At Time: 16:16:4 Section 1 Neonatal intensive care “Luck is where preparation meets opportunity.” This section consists of 16 medication orders followed by corresponding patient profiles representing pharmacotherapy associated with patients admit- ted to a neonatal intensive care unit. Each patient profile is followed by multiple-choice questions pertaining to the medication order and profile infor- mation. Choose the one best-lettered response to each item. The correct answers are provided at the end of this section. The reader is encouraged to attempt all questions for each case or for the entire section prior to referring to the answers. Moreover, where appropriate, the answer key provides a thor- ough explanation of the correct response and should serve as an additional learning tool for the reader. Application and Review of Pediatric Pharmacotherapy Chapter No. 1 Dated: 29/7/2010 At Time: 16:16:4 2 | Application and Review of Pediatric Pharmacotherapy Medication orders Physician order Patient weight: 2.5 kg Aminophylline 10 mg iv load, then begin 2.5 mg iv q 12 h Obtain theophylline concentration 1 h postinfusion of loading dose Date/time: 12/01/2100 Patient name: Baby Boy Turner Physician: John Craver Patient ID: 111222 Medical profile Patient: Baby Boy Turner Patient weight: 2.5 kg Age: 1d/o Present illness: Apneic episodes Allergies: None Medical history: 33 weeks gestation, Apgar 7 and 9 Labs: pending Medication profile Questions Q1 Which of the following is an acceptable definition of apnea of prematurity? 1 o cessation of breathing for less than 20 s 2 o cessation of breathing for at least 20 s 3 o cessation of breathing for less than 20 s when accompanied by bradycardia A o 1 only B o 3 only C o 1 and 3 only Application and Review of Pediatric Pharmacotherapy Chapter No.
    [Show full text]
  • Caffeine in the Treatment of Pain
    Rev Bras Anestesiol ARTIGOS DE REVISÃO 2012; 62: 3: 387-401 ARTIGOS DE REVISÃO Cafeína para o Tratamento de Dor Cristiane Tavares, TSA 1, Rioko Kimiko Sakata, TSA 2 Resumo: Tavares C, Sakata RK – Cafeína para o Tratamento de Dor. Justificativa e objetivos: A cafeína é uma substância amplamente consumida com efeitos em diversos sistemas e que apresenta farmacoci- nética e farmacodinâmica características, causando interações com diversos medicamentos. O objetivo deste estudo é fazer uma revisão sobre os efeitos da cafeína. Conteúdo: Nesta revisão, são abordados a farmacologia da cafeína, os mecanismos de ação, as indicações, as contraindicações, as doses, as interações e os efeitos adversos. Conclusões: Faltam estudos controlados, randomizados e duplos-cegos para avaliar a eficácia analgésica da cafeína nas diversas síndromes dolorosas. Em pacientes com dor crônica, é necessário ter cautela em relação ao desenvolvimento de tolerância, abstinência e interação medi- camentosa no uso crônico de cafeína. Unitermos: ANALGESIA; DOR; DROGAS, Alcaloide/cafeína. ©2012 Elsevier Editora Ltda. Todos os direitos reservados. INTRODUÇÃO Estrutura química A cafeína foi isolada em 1820, mas a estrutura correta des- A cafeína é um alcaloide presente em mais de 60 espécies ta metilxantina foi estabelecida na última década do século de plantas 4. Sua estrutura molecular pertence a um grupo XIX. Os efeitos não foram claramente reconhecidos até 1981, de xantinas trimetiladas que incluem seus compostos inti- quando o bloqueio de receptores adenosina foi correlacio- mamente relacionados: teobromina (presente no cacau) e nado às propriedades estimulantes da cafeína e de seus teofilina (presente no chá) 1. Quimicamente, esses alcaloides análogos 1. Provavelmente a cafeína é uma das substâncias são semelhantes a purinas, xantinas e ácido úrico, que são psicoativas mais utilizadas no mundo, promovendo efeitos compostos metabolicamente importantes 4.
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Caffeine Citrate 10Mg/Ml Oral Solution Maintenance Doses
    PACKAGE LEAFLET: INFORMATION FOR THE PATIENT doctor or nurse may give one more higher • changes in blood tests (reduced levels dose, before continuing to the lower of haemoglobin after prolonged Caffeine Citrate 10mg/ml Oral Solution maintenance doses. treatment) Duration of treatment • reduced thyroid hormone at the start Equivalent to Caffeine 5mg/ml Your baby’s doctor will decide exactly of treatment with other medicines given at the same Please read all of this leaflet carefully how long your newborn must continue Reporting of side effects time. A premature baby may need many before your baby is given this therapy with Caffeine Citrate 10mg/ml If your newborn gets any side effects, medicines, and any problems with caffeine medicine. Oral Solution. If your baby has 5 to 7 days talk to your baby’s doctor. This includes are likely to be minor, but tell the doctor • Keep this leaflet. You may need to read without apnoea attacks, the doctor will any possible side effects not listed in this about any other medication they may it again. stop treatment. leaflet. You can also report side effects D04359 not know about, particularly any other • If you have further questions, please The doctor may decide to check the directly via Yellow Card Scheme. medicine (for example theophylline) given ask the hospital doctor who is looking levels of caffeine in a blood sample Website: www.mhra.gov.uk/yellowcard to your baby to help it breathe. after your baby. as a precaution, or if your baby is not or search for MHRA Yellow Card in the If your newborn gets any side effects, Medications containing phenobarbitone responding to treatment as expected.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]
  • Nevada Medicaid Formulary
    Nevada Medicaid-Approved Preferred Drug List Effective August 15, 2021 Legend In each class, drugs are listed alphabetically by either brand name or generic name. Brand name drug: Uppercase in bold type Generic drug: Lowercase in plain type AL: Age Limit Restrictions DO: Dose Optimization Program GR: Gender Restriction OTC: Over the counter medication available with a prescription. (Prescribers please indicate OTC on the prescription) PA: Prior authorization is required. Prior authorization is the process of obtaining approval of benefits before certain prescriptions are filled. QL: Quantity limits; certain prescription medications have specific quantity limits per prescription or per month. SP: Specialty Pharmacy ST: Step therapy is required. You may need to use one medication before benefits for the use of another medication can be authorized. Drug Name Reference Notes *ADHD/ANTI-NARCOLEPSY/ANTI- OBESITY/ANOREXIANTS* *ADHD AGENT - SELECTIVE ALPHA ADRENERGIC AGONISTS*** clonidine hcl er oral tablet extended release Kapvay AL; QL 12 hour *ADHD AGENT - SELECTIVE NOREPINEPHRINE REUPTAKE INHIBITOR*** atomoxetine hcl oral capsule Strattera DO; AL; QL *AMPHETAMINE MIXTURES*** amphetamine-dextroamphet er oral capsule extended release 24 hour 10 mg, 15 mg, 5 Adderall XR DO; AL; QL mg amphetamine-dextroamphet er oral capsule extended release 24 hour 20 mg, 25 mg, 30 Adderall XR AL; QL mg amphetamine-dextroamphetamine oral Adderall DO; AL; QL tablet 10 mg, 12.5 mg, 15 mg, 5 mg, 7.5 mg amphetamine-dextroamphetamine oral Adderall AL tablet 20 mg,
    [Show full text]
  • Acetylsalicylic Acid (375 Mg), Codeine Phosphate (15 Mg), Caffeine (15 Mg*) Tablets
    Prescribing Information INCLUDING PATIENT MEDICATION INFORMATION N.282® Acetylsalicylic Acid (375 mg), Codeine Phosphate (15 mg), Caffeine (15 mg*) Tablets *equivalent to 30 mg caffeine citrate N.292® Acetylsalicylic acid (375 mg), Codeine Phosphate (30 mg), Caffeine (15 mg*) Tablets *equivalent to 30 mg caffeine citrate ANALGESIC - ANTIPYRETIC PENDOPHARM, Division of Pharmascience Inc. Date of Revision: 6111 Royalmount Ave., Suite 100 Montréal, Québec November 23, 2016 H4P 2T4 Submission Control No.: 195437 282 and 292 are registered trademarks of Pharmascience Inc. TABLE OF CONTENT PART I: HEALTH PROFESSIONAL INFORMATION ......................................................... 3 SUMMARY PRODUCT INFORMATION ........................................................................ 3 INDICATIONS AND CLINICAL USE .............................................................................. 3 CONTRAINDICATIONS ................................................................................................... 4 WARNINGS AND PRECAUTIONS .................................................................................. 5 ADVERSE REACTIONS ................................................................................................. 12 DRUG INTERACTIONS .................................................................................................. 14 DOSAGE AND ADMINISTRATION .............................................................................. 15 OVERDOSAGE ...............................................................................................................
    [Show full text]
  • Role of Sulfiredoxin Interacting Proteins in Lung Cancer Development
    University of Kentucky UKnowledge Theses and Dissertations--Toxicology and Cancer Biology Toxicology and Cancer Biology 2016 ROLE OF SULFIREDOXIN INTERACTING PROTEINS IN LUNG CANCER DEVELOPMENT Hedy Chawsheen University of Kentucky, [email protected] Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.176 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Chawsheen, Hedy, "ROLE OF SULFIREDOXIN INTERACTING PROTEINS IN LUNG CANCER DEVELOPMENT" (2016). Theses and Dissertations--Toxicology and Cancer Biology. 13. https://uknowledge.uky.edu/toxicology_etds/13 This Doctoral Dissertation is brought to you for free and open access by the Toxicology and Cancer Biology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Toxicology and Cancer Biology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]