17 Aug 2004 15:49 AR AR223-GG05-02.tex AR223-GG05-02.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.genom.5.061903.180057 Annu. Rev. Genomics Hum. Genet. 2004. 5:15–56 doi: 10.1146/annurev.genom.5.061903.180057 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on April 15, 2004 COMPARATIVE GENOMICS Webb Miller, Kateryna D. Makova, Anton Nekrutenko, and Ross C. Hardison The Center for Comparative Genomics and Bioinformatics, The Huck Institutes of Life Sciences, and the Departments of Biology, Computer Science and Engineering, and Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania; email:
[email protected],
[email protected],
[email protected],
[email protected] KeyWords whole-genome alignments, evolutionary rates, gene prediction, gene regulation, sequence conservation, Internet resources, genome browsers, genome databases, bioinformatics ■ Abstract The genomes from three mammals (human, mouse, and rat), two worms, and several yeasts have been sequenced, and more genomes will be completed in the near future for comparison with those of the major model organisms. Scientists have used various methods to align and compare the sequenced genomes to address critical issues in genome function and evolution. This review covers some of the major new insights about gene content, gene regulation, and the fraction of mammalian genomes that are under purifying selection and presumed functional. We review the evolution- ary processes that shape genomes, with particular attention to variation in rates within genomes and along different lineages. Internet resources for accessing and analyzing the treasure trove of sequence alignments and annotations are reviewed, and we dis- cuss critical problems to address in new bioinformatic developments in comparative genomics.