A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade

Total Page:16

File Type:pdf, Size:1020Kb

A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene). To date, 38,000 macrovertebrate remains and have been proposed as the sister taxon of hominids, but thus far thousands of small mammal teeth have been recovered from the the fragmentary and scarce Middle Miocene fossil record has above mentioned localities, some of which have yielded primate hampered testing this hypothesis. Here we describe a male partial remains (3–5). These localities can be accurately dated because face with mandible of a previously undescribed fossil hominid, of detailed litho-, bio-, and magnetostratigraphic control (4). An Anoiapithecus brevirostris gen. et sp. nov., from the Middle Mio- age close to 11.9 Ma can be estimated for ACM/C3-Aj, from cene (11.9 Ma) of Spain, which enables testing this hypothesis. which IPS43000 was excavated. Morphological and geometric morphometrics analyses of this ma- terial show a unique facial pattern for hominoids. This taxon Description. The face of IPS43000 (Fig. 1) lacks the nasals and the ANTHROPOLOGY combines autapomorphic features—such as a strongly reduced right maxilla, some parts of the orbits, and parts of both facial prognathism—with kenyapithecine (more specifically, keny- zygomatics. The palate is nearly complete, lacking only the left apithecin) and hominid synapomorphies. This combination sup- C1 and M3, as well as the incisors; part of the frontal also is ports a sister-group relationship between kenyapithecins (Gripho- preserved. The mandible preserves the symphysis and a large pithecus ؉ Kenyapithecus) and hominids. The presence of both portion of the 2 corpora, but lacks the 2 rami; the left I1 and groups in Eurasia during the Middle Miocene and the retention in C1-M2 series and the right C1-M1 series are preserved. Complete kenyapithecins of a primitive hominoid postcranial body plan eruption of the M3 indicates that IPS43000 belongs to an adult support a Eurasian origin of the Hominidae. Alternatively, the two individual, because the slight displacement of this tooth from the extant hominid clades (Homininae and Ponginae) might have alveolar plane merely results from bone distortion at the level of independently evolved in Africa and Eurasia from an ancestral, M2-M3. Middle Miocene stock, so that the supposed crown-hominid syna- pomorphies might be homoplastic. Systematic Paleontology. Systematic paleontology is as follows: Order Primates Linnaeus, 1758; suborder Anthropoidea Mivart, ͉ ͉ ͉ ͉ Anoiapithecus gen. nov. evolution Hominidae Hominoidea 1864; infraorder Catarrhini Geoffroy, 1812; superfamily Homi- Paleoprimatology noidea Gray, 1825; family Hominidae Gray, 1825; subfamily incer- tae sedis; tribe Dryopithecini Gregory and Hellman, 1939; Anoia- here is a general consensus on the relevance of Middle pithecus gen. nov. type species A. brevirostris gen. et sp. nov. TMiocene hominoids for understanding hominid origins (1, Etymology is from Anoia (the region where the site is situated) and 2). However, the question of the initial great-ape/human radi- the Greek pithekos (ape). Generic diagnosis is as for the type ation still remains elusive. In this paper we describe a previously species, A. brevirostris gen. et sp. nov. Holotype is IPS43000, a partial underscribed Middle Miocene thick-enameled hominid [see face with mandible of an adult male individual, housed at the supporting information (SI) Text and Table S1, regarding the Institut Catala`de Paleontologia (Fig. 1; see Table 1 for dental systematic framework used in this paper], which displays a measurements). Type locality is ACM/C3-Aj (Abocador de Can unique and unusual combination of facial characteristics with Mata, Cell 3, locality Aj), in the municipal term of Els Hostalets de significant phylogenetic implications. Anoiapithecus brevirostris Pierola (Catalonia, Spain). Age is subchron C5r.3r (Middle Mio- gen. et sp. nov. shows the basic great-ape synapomorphies and cene, Ϸ11.9 Ma), on the basis of the local ACM magnetostrati- some generalized afropithecid and several kenyapithecine- graphic series (4), corresponding to the local biozone Megacricet- derived features, coupled with a striking reduction of the face. odon ibericus ϩ Democricetodon larteti (MN 7 Mammal Neogene This combination is unknown from any fossil or extant great ape, biozone), on the basis of biostratigraphic data (3, 4). Etymology is which has important implications for reconstructing the initial from the Latin brevis (short) and rostrum (snout). evolutionary history of the great ape and human clade. Stratigraphic Setting. The description of this taxon is based on a Author contributions: S.M.-S. designed research; S.M.-S., D.M.A., and M.K. performed hominoid partial face with mandible (IPS43000) discovered at research; J.F. contributed new reagents/analytic tools; D.M.A., S.A., I.C.-V., S.D.E.-T., J.M.R., locality Abocador de Can Mata (ACM)/C3-Aj, in the area of Els J.G., and J.F. analyzed data; and S.M.-S., D.M.A., and M.K. wrote the paper. Hostalets de Pierola (Valle`s-Penede`s Basin, Catalonia, Spain). Conflict of interest: The authors declare no conflict of interest. This region is characterized by thick Middle to Late Miocene This article is a PNAS Direct Submission. stratigraphic sequences. The construction of a rubbish dump 1To whom correspondence should be addressed. E-mail: [email protected]. (ACM) near the country house of Can Mata (Fig. S1) prompted This article contains supporting information online at www.pnas.org/cgi/content/full/ a paleontological intervention to control the removal of Miocene 0811730106/DCSupplemental. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0811730106 PNAS Early Edition ͉ 1of6 Downloaded by guest on September 26, 2021 AB CD E F G Fig. 1. Cranium and mandible of Anoiapithecus brevirostris (IPS43000, holotype). (A) Right lateral view. (B) Frontal view. (C) Left lateral view. (D) Superior view. (E) Palatal view. (F) Occlusal view of the mandible. (G) CT scan of the right M2, showing enamel thickness. All photographs were taken with the tooth row oriented horizontally. For safety reasons, the cranial reconstruction (A–D) is based on casts of the original specimens. Specific Diagnosis. The face is characterized by reduced nasal and the posterior part of the C1 (with the alveolar plane horizontal). alveolar prognathism with a very short premaxilla. The anterior Nasal aperture edges are vertical. The zygomatic root is mod- border of the orbit is situated over the P3–P4 limit, the glabella erately high and situated over the M1. The anterior surface of the is over the P4, and the anteriormost nasomaxillary contact is over zygomatic root is downwardly inclined. The frontal sinus is well developed, filling the glabellar area and part of the frontal squama. The maxillary sinus is reduced, situated well above the Table 1. Dental measurements (in millimeters) of Anoiapithecus roots of the molars, occupying a small area below the medial side brevirostris gen. et sp. nov. from ACM/C3-Aj of the orbit. The zygomatic root is not pneumatized. Coalescent Upper teeth Lower teeth temporal lines indicate the presence of a sagittal crest. Thin superciliary arches are evident. A large and open incisive MD BL MD BL foramen, with the posterior border located at the level of the P3, is shown. The palate is short, wide, and deep. The pyriform L I1 — — 4.8 6.7 aperture is wide, widest close to the base. Dentition is charac- R C1 14.2 9.6 12.9 8.5 ϭ L C1 — — 13.2 9.2 terized by thick enamel (relative enamel thickness, RET 20) R P3 — — 12.7 7.3 with low dentine penetrance. Low crowns show globulous cusps, L P3 7.0 11.7 12.3 7.6 blunt crests, and restricted basins with nonperipheralized cusps; R P4 — — 7.6 8.8 there are remnants of cingula in lower teeth. Canines and P3 are L P4 7.2 10.4 7.8 8.6 low-crowned whereas upper canines are relatively small and very R M1 9.4 11.2 9.1 8.9 compressed. A robust mandible shows highly divergent rami and L M1 9.4 11.4 9.5 9.1 reduced mandibular length; strong and long inferior torus and R M2 11.3 11.8 — — weak superior torus that forms a simian shelf. L M2 10.7 12.1 11.5 10.0 R M3 10.2 10.4 — — Differential Diagnosis.
Recommended publications
  • Sergio Almécija
    Sergio Almécija Center for the Advanced Study of Human Paleobiology Email: [email protected] Department of Anthropology Cellphone: (646) 943-1159 The George Washington University Science and Engineering Hall 800 22nd Street NW, Suite 6000 Washington, DC 20052 EDUCATION PhD, Cum Laude. Institut Català de Paleontologia Miquel Crusafont at Universitat Autònoma de Barcelona and Universitat de Barcelona, Biological Anthropology, (October 30th, 2009). Dissertation: Evolution of the hand in Miocene apes: implications for the appearance of the human hand. Advisor: Salvador Moyà-Solà. MA with Advanced Studies Certificate (DEA). Institut Català de Paleontologia Miquel Crusafont at Universitat Autònoma de Barcelona. Biological Anthropology, 2007. BS. Universitat Autònoma de Barcelona, Biological Sciences, 2005. PROFESSIONAL APPOINTMENTS Assistant Professor. Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University. Present. Research Instructor. Department of Anatomical Sciences, Stony Brook University. 2012-2015. Fulbright Postdoctoral Fellow. Department of Vertebrate Paleontology, American Museum of Natural History and New York Consortium in Evolutionary Primatology. 2010-2012. Research Associate. Department of Paleoprimatology and Human Paleontology, Institut Català de Paleontologia Miquel Crusafont. 2010-present. RESEARCH INTERESTS Evolution of humans and apes. Based on the morphology of living and fossil hominoids (and other primates), to identify key skeletal adaptations defining different stages of great ape and human evolution, as well as the original selective pressures responsible for specific evolutionary transitions. Morphometrics. Apart from describing new great ape and hominin fossil materials, I am interested in broad comparative studies of key regions of the skeleton using state-of-the-art methods such as three-dimensional morphometrics and phylogenetically-informed comparative methods.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Orangutan Positional Behavior and the Nature of Arboreal Locomotion in Hominoidea Susannah K.S
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 000:000–000 (2006) Orangutan Positional Behavior and the Nature of Arboreal Locomotion in Hominoidea Susannah K.S. Thorpe1* and Robin H. Crompton2 1School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 2Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool L69 3GE, UK KEY WORDS Pongo pygmaeus; posture; orthograde clamber; forelimb suspend ABSTRACT The Asian apes, more than any other, are and orthograde compressive locomotor modes are ob- restricted to an arboreal habitat. They are consequently an served more frequently. Given the complexity of orangu- important model in the interpretation of the morphological tan positional behavior demonstrated by this study, it is commonalities of the apes, which are locomotor features likely that differences in positional behavior between associated with arboreal living. This paper presents a de- studies reflect differences in the interplay between the tailed analysis of orangutan positional behavior for all age- complex array of variables, which were shown to influence sex categories and during a complete range of behavioral orangutan positional behavior (Thorpe and Crompton [2005] contexts, following standardized positional mode descrip- Am. J. Phys. Anthropol. 127:58–78). With the exception tions proposed by Hunt et al. ([1996] Primates 37:363–387). of pronograde suspensory posture and locomotion, orang- This paper shows that orangutan positional behavior is utan positional behavior is similar to that of the African highly complex, representing a diverse spectrum of posi- apes, and in particular, lowland gorillas. This study sug- tional modes. Overall, all orthograde and pronograde sus- gests that it is orthogrady in general, rather than fore- pensory postures are exhibited less frequently in the pres- limb suspend specifically, that characterizes the posi- ent study than previously reported.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • Fleagle and Lieberman 2015F.Pdf
    15 Major Transformations in the Evolution of Primate Locomotion John G. Fleagle* and Daniel E. Lieberman† Introduction Compared to other mammalian orders, Primates use an extraordinary diversity of locomotor behaviors, which are made possible by a complementary diversity of musculoskeletal adaptations. Primate locomotor repertoires include various kinds of suspension, bipedalism, leaping, and quadrupedalism using multiple pronograde and orthograde postures and employing numerous gaits such as walking, trotting, galloping, and brachiation. In addition to using different locomotor modes, pri- mates regularly climb, leap, run, swing, and more in extremely diverse ways. As one might expect, the expansion of the field of primatology in the 1960s stimulated efforts to make sense of this diversity by classifying the locomotor behavior of living primates and identifying major evolutionary trends in primate locomotion. The most notable and enduring of these efforts were by the British physician and comparative anatomist John Napier (e.g., Napier 1963, 1967b; Napier and Napier 1967; Napier and Walker 1967). Napier’s seminal 1967 paper, “Evolutionary Aspects of Primate Locomotion,” drew on the work of earlier comparative anatomists such as LeGros Clark, Wood Jones, Straus, and Washburn. By synthesizing the anatomy and behavior of extant primates with the primate fossil record, Napier argued that * Department of Anatomical Sciences, Health Sciences Center, Stony Brook University † Department of Human Evolutionary Biology, Harvard University 257 You are reading copyrighted material published by University of Chicago Press. Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal and injures the author and publisher. fig. 15.1 Trends in the evolution of primate locomotion.
    [Show full text]
  • The Gibbon's Achilles Tendon Revisited
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Liverpool Repository 1 The gibbon’s Achilles tendon revisited: consequences for the 2 evolution of the great apes? 3 4 5 Peter Aerts 1,2, Kristiaan D’Août 3, 1, Susannah Thorpe 4, Gilles Berillon 5 and Evie Vereecke 6 6 7 1: Department Biology, University of Antwerp (BE) 8 2: Department of Movement and Sports Sciences, University of Ghent (BE) 9 3: Department of Musculoskeletal Biology, University of Liverpool (UK) 10 4: School of Biosciences, University of Birmingham (UK) 11 5: Department of Prehistory, MNHN, CNRS (FR) 12 6: Department of Development and Regeneration, University of Leuven (BE) 13 14 15 Corresponding Author: 16 Peter Aerts 17 FunMorph-lab 18 Department of Biology 19 University of Antwerp (CDE) 20 Universiteitsplein 1 21 B2610 Wilrijk 22 Belgium 23 [email protected] 24 25 26 Abstract 27 28 The well-developed Achilles tendon in humans is generally interpreted as an adaptation for mechanical 29 energy storage and reuse during cyclic locomotion. All other extant great apes have a short tendon 30 and long-fibered triceps surae, which is thought to be beneficial for locomotion in a complex arboreal 31 habitat as this morphology enables a large range of motion. Surprisingly, highly arboreal gibbons show 32 a more human-like triceps surae with a long Achilles tendon. Evidence for a spring-like function similar 33 to humans is not conclusive. 34 We revisit and integrate our anatomical and biomechanical data to calculate the energy that can be 35 recovered from the recoiling Achilles tendon during ankle plantar flexion in bipedal gibbons.
    [Show full text]
  • The Evolution of Human and Ape Hand Proportions
    ARTICLE Received 6 Feb 2015 | Accepted 4 Jun 2015 | Published 14 Jul 2015 DOI: 10.1038/ncomms8717 OPEN The evolution of human and ape hand proportions Sergio Alme´cija1,2,3, Jeroen B. Smaers4 & William L. Jungers2 Human hands are distinguished from apes by possessing longer thumbs relative to fingers. However, this simple ape-human dichotomy fails to provide an adequate framework for testing competing hypotheses of human evolution and for reconstructing the morphology of the last common ancestor (LCA) of humans and chimpanzees. We inspect human and ape hand-length proportions using phylogenetically informed morphometric analyses and test alternative models of evolution along the anthropoid tree of life, including fossils like the plesiomorphic ape Proconsul heseloni and the hominins Ardipithecus ramidus and Australopithecus sediba. Our results reveal high levels of hand disparity among modern hominoids, which are explained by different evolutionary processes: autapomorphic evolution in hylobatids (extreme digital and thumb elongation), convergent adaptation between chimpanzees and orangutans (digital elongation) and comparatively little change in gorillas and hominins. The human (and australopith) high thumb-to-digits ratio required little change since the LCA, and was acquired convergently with other highly dexterous anthropoids. 1 Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA. 2 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 11794, USA. 3 Institut Catala` de Paleontologia Miquel Crusafont (ICP), Universitat Auto`noma de Barcelona, Edifici Z (ICTA-ICP), campus de la UAB, c/ de les Columnes, s/n., 08193 Cerdanyola del Valle`s (Barcelona), Spain.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Fossil Hominin Shoulders Support an African Ape-Like Last Common Ancestor of Humans and Chimpanzees
    Fossil hominin shoulders support an African ape-like last common ancestor of humans and chimpanzees Nathan M. Younga,1, Terence D. Capellinib,c, Neil T. Roachb,d, and Zeresenay Alemsegede aDepartment of Orthopaedic Surgery, University of California, San Francisco, CA 94110; bDepartment of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138; cBroad Institute of MIT and Harvard University, Cambridge, MA 02142; dDivision of Anthropology, American Museum of Natural History, New York, NY 10024; and eDepartment of Anthropology, California Academy of Sciences, San Francisco, CA 94118 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved August 12, 2015 (received for review June 9, 2015) Reconstructing the behavioral shifts that drove hominin evolution conditions, one can model the associated evolutionary trajectories requires knowledge of the timing, magnitude, and direction of and intermediate states connecting them to the descendant pop- anatomical changes over the past ∼6–7 million years. These re- ulations and test how well these predictions fit the available constructions depend on assumptions regarding the morphotype fossil evidence. of the Homo–Pan last common ancestor (LCA). However, there is Two hypotheses of the LCA postcranial morphotype have little consensus for the LCA, with proposed models ranging from been proposed, both requiring different selection pressures and African ape to orangutan or generalized Miocene ape-like. The levels of homoplasy. In the first scenario, a number of anatomical ancestral state of the shoulder is of particular interest because it and locomotor traits shared among closely related African apes is functionally associated with important behavioral shifts in hom- are thought to be homologous (12–14) and represent the an- inins, such as reduced arboreality, high-speed throwing, and tool cestral state of the LCA from which early hominins evolved use.
    [Show full text]
  • Odd-Nosed Monkey Scapular Morphology Converges on That of Arm- Swinging Apes
    Journal of Human Evolution 143 (2020) 102784 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Odd-nosed monkey scapular morphology converges on that of arm- swinging apes * Michael S. Selby a, , C. Owen Lovejoy b, Craig D. Byron c a Department of Biomedical Sciences, PCOM Georgia, Suwanee, GA, 30024-2937, USA b Department of Anthropology, School of Biomedical Sciences, Kent State University, Kent, OH, 44242e0001, USA c Department of Biology, Mercer University, Macon, GA, 31207, USA article info abstract Article history: Odd-nosed monkeys ‘arm-swing’ more frequently than other colobines. They are therefore somewhat Received 7 March 2019 behaviorally analogous to atelines and apes. Scapular morphology regularly reflects locomotor mode, Accepted 13 March 2020 with both arm-swinging and climbing anthropoids showing similar characteristics, especially a medi- Available online xxx olaterally narrow blade and cranially angled spine and glenoid. However, these traits are not expressed uniformly among anthropoids. Therefore, behavioral convergences in the odd-nosed taxa of Nasalis, Keywords: Pygathrix, and Rhinopithecus with hominoids may not have resulted in similar structural convergences. Pygathrix We therefore used a broad sample of anthropoids to test how closely odd-nosed monkey scapulae Rhinopithecus Scrambling resemble those of other arm-swinging primates. We used principal component analyses on size- fl Hominoids corrected linear metrics and angles that re ect scapular size and shape in a broad sample of anthro- Climbing poids. As in previous studies, our first component separated terrestrial and above-branch quadrupeds from clambering and arm-swinging taxa. On this axis, odd-nosed monkeys were closer than other colobines to modern apes and Ateles.
    [Show full text]