Pitfalls Reconstructing the Last Common Ancestor of Chimpanzees and Humans LETTER Sergio Almécijaa,B,1

Total Page:16

File Type:pdf, Size:1020Kb

Pitfalls Reconstructing the Last Common Ancestor of Chimpanzees and Humans LETTER Sergio Almécijaa,B,1 LETTER Pitfalls reconstructing the last common ancestor of chimpanzees and humans LETTER Sergio Almécijaa,b,1 The morphological nature of the last common ancestor evolutionary model from Pan into humans relies solely (LCA) of chimpanzees/bonobos and humans is a fasci- on the intermediate position (in PC1) of a “simulated” nating topic in human evolution. Available evidence Australopithecus afarensis adult, based on the “Dikika suggests that both lineages share a LCA that lived in baby” (∼3-y-old at death). However, one of these au- Africa ∼8–6 Myr. However, the hominoid fossil record of thors has previously shown that an actual A. afarensis this time period is inadequate, prompting the use of adult falls within the human and orangutan variation novel methodological approaches to reconstruct the (figure 2B in ref. 3). Furthermore, this simulated Dikika anatomy of this key ancestor. In a recent example, adult is—like humans—more similar to Nasalis than Young et al. (1) claim that “fossil hominin shoulders sup- to African apes (figure 2D and table S1 in ref. 1; in- port an African ape-like last common ancestor of hu- congruent with figure S5 in ref. 1). Fourth, Young et al. mans and chimpanzees.” Although I applaud these do not actually test alternative models of evolution authors for implementing novel comparative methods (see a formal test including convergence in ref. 4). In- to paleoanthropology, fundamental aspects of the ex- stead, they only compare the morphometric lengths perimental design were disregarded, leading to biased of two phylogenetic trees on morphospace. Fifth, all conclusions. Herein I provide constructive criticisms on branches in their trees were unfoundedly assumed to that study, also addressing recurrent pitfalls in the field, have equal length, forcing a punctuated model of evo- to help redirect future research on human paleobiology. lution (change being independent of time, contrary to First, the biological meaning of the shape data in their own conclusions), and disregarding the molecu- the Young et al. (1) analysis is unclear. Procrustes su- larly established branch lengths of most species in perimposition allows one to elegantly size-adjust data their sample (Fig. 1). Some of these pitfalls are also to analyze pure shape. However, Young et al. use noted by Melillo (5), who further highlighted functional allometric residuals as their input data without dem- aspects preserved in the scapula of “Kadanuumuu,” onstrating the existence of a common allometric trend an adult specimen of A. afarensis. in the sample, predicting a significant amount of scap- Perhaps the most relevant message of the study ular shape variation. This can fail to correctly identify was overlooked: Homo and Pan share ∼99% of their individuals of the same shape at different size, pro- genes, even given their remarkable phenotypic differ- ducing misleading results (2). Later, Young et al. (1) ences (resulting from gene regulation), demonstrating argue that scapular differences between Pan and Go- that phylogenetic proximity does not predict pheno- rilla are associated with body size, undermining the typic evolution. Thus, if indeed the LCA exhibited a assumption about their “allometrically adjusted” data. Pan-like scapula, given the mosaic nature of ape and Second, Young et al. favor a Pan-like LCA even though human evolution and that other anatomical regions their results show that Pan and Homo evolved in op- reveal alternative stories (4, 6), this study (1) highlights posite directions along the major axis of shape varia- even more the complexity of reconstructing the LCA’s tion (PC1; figure 2 E and F in ref. 1). Third, the linear mosaic anatomy. aCenter for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052; and bInstitut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain Author contributions: S.A. designed research and wrote the paper. The author declares no conflict of interest. 1Email: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1524165113 PNAS | February 23, 2016 | vol. 113 | no. 8 | E943–E944 Downloaded by guest on September 27, 2021 ? Myr 0 Pan Homo Gorilla Pongo 5 Hylobates LCA: ‘Pan-cestor’ paradigm 10 LCA: complex mosaic Sivapithecus 15 Pierolapithecus 20 Fig. 1. Time-calibrated hominoid phylogeny highlighting the position of the LCA of Pan and Homo. The “Pan-cestor” paradigm (red), assumes that Pan represents a static living fossil undistinguishable from the LCA, constituting the “starting point” for human evolution (arrow). However, fossil hominoids (exemplified by Pierolapithecus and Sivapithecus) indicate that homoplasy and mosaicism were the rule, not the exception, during ape and human evolution. Under this model (green), the unique combination of plesiomorphic and autapomorphic features exhibited by each lineage (including Pan and Homo) and the evolutionary time (branch lengths) must be considered when modeling the tempo and mode of evolution and reconstructing ancestral morphologies. 1 Young NM, Capellini TD, Roach NT, Alemseged Z (2015) Fossil hominin shoulders support an African ape-like last common ancestor of humans and chimpanzees. Proc Natl Acad Sci USA 112(38):11829–11834. 2 Jungers WL, Falsetti AB, Wall CE (1995) Shape, relative size, and size-adjustments in morphometrics. Yearb Phys Anthropol 38:137–161. 3 Green DJ, Alemseged Z (2012) Australopithecus afarensis scapular ontogeny, function, and the role of climbing in human evolution. Science 338(6106):514–517. 4 Almécija S, Smaers JB, Jungers WL (2015) The evolution of human and ape hand proportions. Nat Commun 6:7717. 5 Melillo SM (2015) An alternative interpretation of the Australopithecus scapula. Proc Natl Acad Sci USA 112(52):E7159. 6 Almécija S, et al. (2013) The femur of Orrorin tugenensis exhibits morphometric affinities with both Miocene apes and later hominins. Nat Commun 4:2888. E944 | www.pnas.org/cgi/doi/10.1073/pnas.1524165113 Almécija Downloaded by guest on September 27, 2021.
Recommended publications
  • EAZA Best Practice Guidelines Bonobo (Pan Paniscus)
    EAZA Best Practice Guidelines Bonobo (Pan paniscus) Editors: Dr Jeroen Stevens Contact information: Royal Zoological Society of Antwerp – K. Astridplein 26 – B 2018 Antwerp, Belgium Email: [email protected] Name of TAG: Great Ape TAG TAG Chair: Dr. María Teresa Abelló Poveda – Barcelona Zoo [email protected] Edition: First edition - 2020 1 2 EAZA Best Practice Guidelines disclaimer Copyright (February 2020) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable. EAZA and the EAZA APE TAG make a diligent effort to provide a complete and accurate representation of the data in its reports, publications, and services. However, EAZA does not guarantee the accuracy, adequacy, or completeness of any information. EAZA disclaims all liability for errors or omissions that may exist and shall not be liable for any incidental, consequential, or other damages (whether resulting from negligence or otherwise) including, without limitation, exemplary damages or lost profits arising out of or in connection with the use of this publication. Because the technical information provided in the EAZA Best Practice Guidelines can easily be misread or misinterpreted unless properly analysed, EAZA strongly recommends that users of this information consult with the editors in all matters related to data analysis and interpretation.
    [Show full text]
  • Sergio Almécija
    Sergio Almécija Center for the Advanced Study of Human Paleobiology Email: [email protected] Department of Anthropology Cellphone: (646) 943-1159 The George Washington University Science and Engineering Hall 800 22nd Street NW, Suite 6000 Washington, DC 20052 EDUCATION PhD, Cum Laude. Institut Català de Paleontologia Miquel Crusafont at Universitat Autònoma de Barcelona and Universitat de Barcelona, Biological Anthropology, (October 30th, 2009). Dissertation: Evolution of the hand in Miocene apes: implications for the appearance of the human hand. Advisor: Salvador Moyà-Solà. MA with Advanced Studies Certificate (DEA). Institut Català de Paleontologia Miquel Crusafont at Universitat Autònoma de Barcelona. Biological Anthropology, 2007. BS. Universitat Autònoma de Barcelona, Biological Sciences, 2005. PROFESSIONAL APPOINTMENTS Assistant Professor. Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University. Present. Research Instructor. Department of Anatomical Sciences, Stony Brook University. 2012-2015. Fulbright Postdoctoral Fellow. Department of Vertebrate Paleontology, American Museum of Natural History and New York Consortium in Evolutionary Primatology. 2010-2012. Research Associate. Department of Paleoprimatology and Human Paleontology, Institut Català de Paleontologia Miquel Crusafont. 2010-present. RESEARCH INTERESTS Evolution of humans and apes. Based on the morphology of living and fossil hominoids (and other primates), to identify key skeletal adaptations defining different stages of great ape and human evolution, as well as the original selective pressures responsible for specific evolutionary transitions. Morphometrics. Apart from describing new great ape and hominin fossil materials, I am interested in broad comparative studies of key regions of the skeleton using state-of-the-art methods such as three-dimensional morphometrics and phylogenetically-informed comparative methods.
    [Show full text]
  • Gorilla Beringei (Eastern Gorilla) 07/09/2016, 02:26
    Gorilla beringei (Eastern Gorilla) 07/09/2016, 02:26 Kingdom Phylum Class Order Family Animalia ChordataMammaliaPrimatesHominidae Scientific Gorilla beringei Name: Species Matschie, 1903 Authority: Infra- specific See Gorilla beringei ssp. beringei Taxa See Gorilla beringei ssp. graueri Assessed: Common Name(s): English –Eastern Gorilla French –Gorille de l'Est Spanish–Gorilla Oriental TaxonomicMittermeier, R.A., Rylands, A.B. and Wilson D.E. 2013. Handbook of the Mammals of the World: Volume Source(s): 3 Primates. Lynx Edicions, Barcelona. This species appeared in the 1996 Red List as a subspecies of Gorilla gorilla. Since 2001, the Eastern Taxonomic Gorilla has been considered a separate species (Gorilla beringei) with two subspecies: Grauer’s Gorilla Notes: (Gorilla beringei graueri) and the Mountain Gorilla (Gorilla beringei beringei) following Groves (2001). Assessment Information [top] Red List Category & Criteria: Critically Endangered A4bcd ver 3.1 Year Published: 2016 Date Assessed: 2016-04-01 Assessor(s): Plumptre, A., Robbins, M. & Williamson, E.A. Reviewer(s): Mittermeier, R.A. & Rylands, A.B. Contributor(s): Butynski, T.M. & Gray, M. Justification: Eastern Gorillas (Gorilla beringei) live in the mountainous forests of eastern Democratic Republic of Congo, northwest Rwanda and southwest Uganda. This region was the epicentre of Africa's "world war", to which Gorillas have also fallen victim. The Mountain Gorilla subspecies (Gorilla beringei beringei), has been listed as Critically Endangered since 1996. Although a drastic reduction of the Grauer’s Gorilla subspecies (Gorilla beringei graueri), has long been suspected, quantitative evidence of the decline has been lacking (Robbins and Williamson 2008). During the past 20 years, Grauer’s Gorillas have been severely affected by human activities, most notably poaching for bushmeat associated with artisanal mining camps and for commercial trade (Plumptre et al.
    [Show full text]
  • Bonobos (Pan Paniscus) Show an Attentional Bias Toward Conspecifics’ Emotions
    Bonobos (Pan paniscus) show an attentional bias toward conspecifics’ emotions Mariska E. Kreta,1, Linda Jaasmab, Thomas Biondac, and Jasper G. Wijnend aInstitute of Psychology, Cognitive Psychology Unit, Leiden University, 2333 AK Leiden, The Netherlands; bLeiden Institute for Brain and Cognition, 2300 RC Leiden, The Netherlands; cApenheul Primate Park, 7313 HK Apeldoorn, The Netherlands; and dPsychology Department, University of Amsterdam, 1018 XA Amsterdam, The Netherlands Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved February 2, 2016 (received for review November 8, 2015) In social animals, the fast detection of group members’ emotional perspective, it is most adaptive to be able to quickly attend to rel- expressions promotes swift and adequate responses, which is cru- evant stimuli, whether those are threats in the environment or an cial for the maintenance of social bonds and ultimately for group affiliative signal from an individual who could provide support and survival. The dot-probe task is a well-established paradigm in psy- care (24, 25). chology, measuring emotional attention through reaction times. Most primates spend their lives in social groups. To prevent Humans tend to be biased toward emotional images, especially conflicts, they keep close track of others’ behaviors, emotions, and when the emotion is of a threatening nature. Bonobos have rich, social debts. For example, chimpanzees remember who groomed social emotional lives and are known for their soft and friendly char- whom for long periods of time (26). In the chimpanzee, but also in acter. In the present study, we investigated (i) whether bonobos, the rarely studied bonobo, grooming is a major social activity and similar to humans, have an attentional bias toward emotional scenes a means by which animals living in proximity may bond and re- ii compared with conspecifics showing a neutral expression, and ( ) inforce social structures.
    [Show full text]
  • Orangutan…Taxonomy…And…Nomenclature
    «««« ORANGUTAN…TAXONOMY…AND…NOMENCLATURE« « Craig«D em itros« « The«taxonom y«of«the«orangutan«has«been«confusing«and«is«still«the«subject«of« m uch«debate.«Q uestions«at«the«specific«and«subspecific«level«are«still«being« investigated«(Courtenay«et«al.«1988).«The«follow ing«taxonom ic«inform ation«is« taken«prim arily«from «G roves,«1971.« « H IG H ER«LEVEL«TAXO N O M Y:« O rder:«Prim ates« Suborder:«A nthropoidea« Superfam ily:«H om inoidea« Fam ily:«Pongidae«(Includes«extant«genera«Pan,…Gorilla…and…Pongo).« « H ISTO RICA L«TAXO N O M Y«AT«TH E«G EN U S«A N D «G EN U S«SPECIES«LEVEL:«« G enus« Pongo«Lacepede,«1799.« O urangus«Zim m erm an,«1777«(N am e«invalidated).« « G enus«species«(Pongo…pygm aeus«H oppius,«1763).« Sim ia…pygm aeus«H oppius,«1763.««Type«locality«Sum atra.« Sim ia…satyrus«Linnaeus,«1766.« O urangus…outangus«Zim m erm an,«1777.« Pongo…borneo«Lacepede,«1799.««Type«locality«Borneo.« Sim ia…Agrais«Schreber,«1779.««Type«locality«Borneo.« Pongo…W urm bii«Tiedem ann,«1808.««Type«locality«Borneo.« Pongo…Abelii«Lesson,«1827.««Type«locality«Sum atra.« Sim ia…M orio«O w en,«1836.««Type«locality«Borneo.« Pithecus…bicolor«I.«G eoffroy,«1841.««Type«locality«Sum atra.« Sim ia…Gargantica«Pearson,«1841.««Type«locality«Sum atra.« Pithecus…brookei«Blyth,«1853.««Type«locality«Saraw ak.« Pithecus…ow enii«Blyth,«1853.««Type«locality«Saraw ak.« Pithecus…curtus«Blyth,«1855.««Type«locality«Saraw ak.« Satyrus…Knekias«M eyer,«1856.««Type«locality«Borneo.« Pithecus…W allichii«G ray,«1870.««Type«locality«Borneo.« Pithecus…sum atranus«Selenka,«1896.««Type«locality«Sum atra.« Pongo…pygm aeus«Rothschild,«1904.««First«use«of«this«com bination.« Ptihecus…w allacei«Elliot,«1913.««Type«locality«Borneo.« « CURRENT…TAXONOMY« « The«current«and«m ost«accepted«taxonom y«of«the«G enus«Pongo«includes«one« species«Pongo…pygm aeus«and«tw o«subspecies«P.p.…pygm aeus«(the«Bornean« subspecies)«and«P.p.…abelii«(the«Sum atran«subspecies)«(Bem m el«1968;«Jones« 1969;«G roves«1971;«Jacobshagen«1979;«Seuarez«et«al.«1979«and«G roves«1993).« 5« « .
    [Show full text]
  • Cross-River Gorillas
    CMS Agreement on the Distribution: General Conservation of Gorillas UNEP/GA/MOP3/Inf.9 and their Habitats of the 24 April 2019 Convention on Migratory Species Original: English THIRD MEETING OF THE PARTIES Entebbe, Uganda, 18-20 June 2019 REVISED REGIONAL ACTION PLAN FOR THE CONSERVATION OF THE CROSS RIVER GORILLA (Gorilla gorilla diehli) 2014 - 2019 For reasons of economy, this document is printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. FewerToday, thethan total population of Cross River gorillas may number fewer than 300 individuals 300 left Revised Regional Action Plan for the Conservation of the Cross River Gorilla (Gorilla gorilla diehli) 2014–2019 HopeUnderstanding the status of the changing threats across the Cross River gorilla landscape will provide key information for guiding our collectiveSurvival conservation activities cross river gorilla action plan cover_2013.indd 1 2/3/14 10:27 AM Camera trap image of a Cross River gorilla at Afi Mountain Cross River Gorilla (Gorilla gorilla diehli) This plan outlines measures that should ensure that Cross River gorilla numbers are able to increase at key core sites, allowing them to extend into areas where they have been absent for many years. cross river gorilla action plan cover_2013.indd 2 2/3/14 10:27 AM Revised Regional Action Plan for the Conservation of the Cross River Gorilla (Gorilla gorilla diehli) 2014-2019 Revised Regional Action Plan for the Conservation of the Cross River Gorilla (Gorilla gorilla diehli) 2014-2019 Compiled and edited by Andrew Dunn1, 16, Richard Bergl2, 16, Dirck Byler3, Samuel Eben-Ebai4, Denis Ndeloh Etiendem5, Roger Fotso6, Romanus Ikfuingei6, Inaoyom Imong1, 7, 16, Chris Jameson6, Liz Macfie8, 16, Bethan Mor- gan9, 16, Anthony Nchanji6, Aaron Nicholas10, Louis Nkembi11, Fidelis Omeni12, John Oates13, 16, Amy Pokemp- ner14, Sarah Sawyer15 and Elizabeth A.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Proposal for Inclusion of the Chimpanzee
    CMS Distribution: General CONVENTION ON MIGRATORY UNEP/CMS/COP12/Doc.25.1.1 25 May 2017 SPECIES Original: English 12th MEETING OF THE CONFERENCE OF THE PARTIES Manila, Philippines, 23 - 28 October 2017 Agenda Item 25.1 PROPOSAL FOR THE INCLUSION OF THE CHIMPANZEE (Pan troglodytes) ON APPENDIX I AND II OF THE CONVENTION Summary: The Governments of Congo and the United Republic of Tanzania have jointly submitted the attached proposal* for the inclusion of the Chimpanzee (Pan troglodytes) on Appendix I and II of CMS. *The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CMS Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. UNEP/CMS/COP12/Doc.25.1.1 PROPOSAL FOR THE INCLUSION OF CHIMPANZEE (Pan troglodytes) ON APPENDICES I AND II OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS A: PROPOSAL Inclusion of Pan troglodytes in Appendix I and II of the Convention on the Conservation of Migratory Species of Wild Animals. B: PROPONENTS: Congo and the United Republic of Tanzania C: SUPPORTING STATEMENT 1. Taxonomy 1.1 Class: Mammalia 1.2 Order: Primates 1.3 Family: Hominidae 1.4 Genus, species or subspecies, including author and year: Pan troglodytes (Blumenbach 1775) (Wilson & Reeder 2005) [Note: Pan troglodytes is understood in the sense of Wilson and Reeder (2005), the current reference for terrestrial mammals used by CMS).
    [Show full text]
  • Orangutan Positional Behavior and the Nature of Arboreal Locomotion in Hominoidea Susannah K.S
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 000:000–000 (2006) Orangutan Positional Behavior and the Nature of Arboreal Locomotion in Hominoidea Susannah K.S. Thorpe1* and Robin H. Crompton2 1School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 2Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool L69 3GE, UK KEY WORDS Pongo pygmaeus; posture; orthograde clamber; forelimb suspend ABSTRACT The Asian apes, more than any other, are and orthograde compressive locomotor modes are ob- restricted to an arboreal habitat. They are consequently an served more frequently. Given the complexity of orangu- important model in the interpretation of the morphological tan positional behavior demonstrated by this study, it is commonalities of the apes, which are locomotor features likely that differences in positional behavior between associated with arboreal living. This paper presents a de- studies reflect differences in the interplay between the tailed analysis of orangutan positional behavior for all age- complex array of variables, which were shown to influence sex categories and during a complete range of behavioral orangutan positional behavior (Thorpe and Crompton [2005] contexts, following standardized positional mode descrip- Am. J. Phys. Anthropol. 127:58–78). With the exception tions proposed by Hunt et al. ([1996] Primates 37:363–387). of pronograde suspensory posture and locomotion, orang- This paper shows that orangutan positional behavior is utan positional behavior is similar to that of the African highly complex, representing a diverse spectrum of posi- apes, and in particular, lowland gorillas. This study sug- tional modes. Overall, all orthograde and pronograde sus- gests that it is orthogrady in general, rather than fore- pensory postures are exhibited less frequently in the pres- limb suspend specifically, that characterizes the posi- ent study than previously reported.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • West African Chimpanzees
    Status Survey and Conservation Action Plan West African Chimpanzees Compiled and edited by Rebecca Kormos, Christophe Boesch, Mohamed I. Bakarr and Thomas M. Butynski IUCN/SSC Primate Specialist Group IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and West African Chimpanzees Action Plan The IUCN Species Survival Commission is committed to communicating important species conservation information to natural resource managers, decision makers and others whose actions affect the conservation of biodiversity. The SSC’s Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC’s Wildlife Trade Programme and Conser- vation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conser- vation of natural landscapes, coordination of law enforcement efforts, as well as promotion of conservation education, research, and international cooperation. The World Wide Fund for Nature (WWF) provides significant annual operating support to the SSC.
    [Show full text]