Initial List of Vascular Plant Species Observed at Bull Pond, Harwinton, CT in Fall 2016 to Be Expanded
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi
The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2016 Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi Hanna M. Miller University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Biodiversity Commons, and the Botany Commons Recommended Citation Miller, Hanna M., "Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi" (2016). Honors Theses. 389. https://aquila.usm.edu/honors_theses/389 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Vascular Flora of the Possum Walk Trail at the Infinity Science Center, Hancock County, Mississippi by Hanna Miller A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science in the Department of Biological Sciences May 2016 ii Approved by _________________________________ Mac H. Alford, Ph.D., Thesis Adviser Professor of Biological Sciences _________________________________ Shiao Y. Wang, Ph.D., Chair Department of Biological Sciences _________________________________ Ellen Weinauer, Ph.D., Dean Honors College iii Abstract The North American Coastal Plain contains some of the highest plant diversity in the temperate world. However, most of the region has remained unstudied, resulting in a lack of knowledge about the unique plant communities present there. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Host Range and Impact of Dichrorampha Aeratana, the First Potential Biological Control Agent for Leucanthemum Vulgare in North America and Australia
insects Article Host Range and Impact of Dichrorampha aeratana, the First Potential Biological Control Agent for Leucanthemum vulgare in North America and Australia Sonja Stutz 1,* , Rosemarie De Clerck-Floate 2 , Hariet L. Hinz 1, Alec McClay 3 , Andrew J. McConnachie 4 and Urs Schaffner 1 1 CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland; [email protected] (H.L.H.); [email protected] (U.S.) 2 Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403—1 Ave. S., Lethbridge, AB T1J 4B1, Canada; rosemarie.declerck-fl[email protected] 3 12 Roseglen Private, Ottawa, ON K1H 1B6, Canada; [email protected] 4 Weed Research Unit, New South Wales Department of Primary Industries, Biosecurity and Food Safety, Orange, NSW 2800, Australia; [email protected] * Correspondence: [email protected] Simple Summary: Oxeye daisy, a Eurasian member of the daisy family, has become invasive in several parts of the world, including North America and Australia. We investigated whether a root-feeding moth found closely associated with oxeye daisy in Europe could be used as a biological control agent for the plant when weedy. We found that the moth could develop on 11 out of 74 plant species that we tested in laboratory conditions when it was given no choice of plants. When the Citation: Stutz, S.; De Clerck-Floate, moths were given a choice of food plants outdoors, we found its larvae only on the ornamentals R.; Hinz, H.L.; McClay, A.; Shasta daisy and creeping daisy. Larval feeding had no impact on the weight and number of flowers McConnachie, A.J.; Schaffner, U. -
MONARCH NECTAR PLANTS Great Lakes
MONARCH NECTAR PLANTS Great Lakes Left to right: Monarch on eastern purple coneower, smooth oxeye, and whorled milkweed. e Great Lakes region encompasses eastern Minnesota, entire range. Adult monarchs depend on diverse nectar sources Wisconsin, Michigan, Ohio, northern Pennsylvania, and most for food during all stages of the year, from spring and summer of western and central New York. Within this area lies vast breeding to fall migration and overwintering. Caterpillars, on tallgrass prairies, sprawling wetlands, and mixed broadleaf the other hand, are completely dependent on their milkweed forests. ese communities are home to an impressive diversity host plants. Inadequate milkweed and nectar plant food of butteries, including the northern migratory population of sources at any point may impact the number of monarchs that the monarch buttery, which depends on the oral resources successfully arrive at overwintering sites in the fall. available within these habitats for its survival. Providing milkweeds and other nectar-rich owers that Each spring, monarchs leave overwintering sites in bloom where and when monarchs need them is one of the most coastal California and the mountains of central Mexico and fan signicant actions you can take to support monarch buttery out across North America to breed and lay eggs on milkweed, populations. is guide features Great Lakes native plants the monarch’s host plant. Several generations are produced that have documented monarch visitation, bloom during the over the course of the spring and summer. In late summer times of year when monarchs are present, are commercially and early fall, adults migrate back to the overwintering sites, available, and are known to be hardy. -
List of Plants for Great Sand Dunes National Park and Preserve
Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present -
Hybridization in Compositae
Hybridization in Compositae Dr. Edward Schilling University of Tennessee Tennessee – not Texas, but we still grow them big! [email protected] Ayres Hall – University of Tennessee campus in Knoxville, Tennessee University of Tennessee Leucanthemum vulgare – Inspiration for school colors (“Big Orange”) Compositae – Hybrids Abound! Changing view of hybridization: once consider rare, now known to be common in some groups Hotspots (Ellstrand et al. 1996. Proc Natl Acad Sci, USA 93: 5090-5093) Comparison of 5 floras (British Isles, Scandanavia, Great Plains, Intermountain, Hawaii): Asteraceae only family in top 6 in all 5 Helianthus x multiflorus Overview of Presentation – Selected Aspects of Hybridization 1. More rather than less – an example from the flower garden 2. Allopolyploidy – a changing view 3. Temporal diversity – Eupatorium (thoroughworts) 4. Hybrid speciation/lineages – Liatrinae (blazing stars) 5. Complications for phylogeny estimation – Helianthinae (sunflowers) Hybrid: offspring between two genetically different organisms Evolutionary Biology: usually used to designated offspring between different species “Interspecific Hybrid” “Species” – problematic term, so some authors include a description of their species concept in their definition of “hybrid”: Recognition of Hybrids: 1. Morphological “intermediacy” Actually – mixture of discrete parental traits + intermediacy for quantitative ones In practice: often a hybrid will also exhibit traits not present in either parent, transgressive Recognition of Hybrids: 1. Morphological “intermediacy” Actually – mixture of discrete parental traits + intermediacy for quantitative ones In practice: often a hybrid will also exhibit traits not present in either parent, transgressive 2. Genetic “additivity” Presence of genes from each parent Recognition of Hybrids: 1. Morphological “intermediacy” Actually – mixture of discrete parental traits + intermediacy for quantitative ones In practice: often a hybrid will also exhibit traits not present in either parent, transgressive 2. -
The Nodding Onion
J U L Y 2 0 1 9 | P A G E 1 O C T O B E R 2 0 1 9 THE NODDING ONION Newsletter of the Northeast Chapter of the Illinois Native Plant Society : o t o h P C H A P T E R B O A R D W H A T ' S I N T H I S I S S U E : President cassi saari From the President Vice President Montrose Dunes Field Trip Mark Kluge Native Plant Get-Together Treasurer Spiranthes on the Moon Jason Zylka INPS Grants Research Membership Chair 2020 Grant Program Kathy Garness Calendar of Events Field Trips Coordinator Iza Redlinksi Newsletter Editor Anna Braum Member At-Large Sheri Moor O C T O B E R 2 0 1 9 | P A G E 2 From the President 2019 Northeast Chapter Events We went all over the region this year (see map, right), even dipping into Indiana and Wisconsin. Our chapter board is scheming hikes and other events for 2020, including a chapter gathering on January 26th — save the date! The asters and sunflowers are finishing up flowering, but there are ways to get your flower fix all throughout the winter without heading south. Join iNaturalist.org, where you can upload your old photos and help other people identify theirs. The results of the 2019 Illinois Botanists Big Year will be announced in late January and there are many thousands of observations waiting to be identified. Can you help? Help Identify —cassi saari A smattering of Asteraceae diversity by local iNaturalist users (iNatters): Eupatorieae: Eutrochium maculatum Astereae: Symphyotrichum novae-angliae Heliantheae: Rudbeckia hirta (black-eyed (spotted Joe Pye) by @vvoelker (New England aster) by @musicmanz -
Sedge – Mixed Forb Fen
Sedge – Mixed Forb Fen System: Palustrine Subsystem: Herbaceous PA Ecological Group(s): Peatland Wetland Global Rank: GNR State Rank: S1 General Description These are open, sedge-dominated wetlands that usually occur on organic substrate (sedge peat), saturated throughout most of the year by base-rich groundwater. These sites usually lack the distinct seepage areas associated with other fen types. Sedge species dominate, including prairie sedge (Carex prairea), Atlantic sedge (Carex sterilis), and/or sedge (Carex tetanica). Other species may include mountain-mint (Pycnanthemum virginianum), blue vervain (Verbena hastata), starry false Solomon's- seal (Maianthemum stellatum), common cat-tail (Typha latifolia), willow-herb (Epilobium leptophyllum), bedstraw (Galium tinctorium), sensitive fern (Onoclea sensibilis), jewelweed (Impatiens capensis), swamp thistle (Cirsium muticum), and Greek valerian (Polemonium reptans). Rank Justification Critically imperiled in the jurisdiction because of extreme rarity or because of some factor(s) such as very steep declines making it especially vulnerable to extirpation from the jurisdiction. Identification Presence of calcareous indicator plant species such as Atlantic sedge (Carex sterilis), sedge (Carex tetanica), and mountain-mint (Pycnanthemum virginianum) Peat is usually present. Dominance of grass-like plants Surface water pH is between 6.0 and 7.9 during the growing season. Characteristic Species Herbs Prairie sedge (Carex prairea) Atlantic sedge (Carex sterilis) Wood's sedge (Carex tetanica) Mountain-mint (Pycnanthemum virginianum) Blue vervain (Verbena hastata) Starflower (Maianthemum stellatum) Common cat-tail (Typha latifolia) Willow-herb (Epilobium leptophyllum) Bedstraw (Galium tinctorium) Sensitive fern (Onoclea sensibilis) Jewelweed (Impatiens capensis) Swamp thistle (Cirsium muticum) Spreading Jacob's-ladder (Polemonium reptans) Baltic rush (Juncus arcticus var. littoralis) Spotted joe-pye-weed (Eutrochium maculatum) Exotic Species Common reed (Phragmites australis ssp. -
Checklist Flora of the Former Carden Township, City of Kawartha Lakes, on 2016
Hairy Beardtongue (Penstemon hirsutus) Checklist Flora of the Former Carden Township, City of Kawartha Lakes, ON 2016 Compiled by Dale Leadbeater and Anne Barbour © 2016 Leadbeater and Barbour All Rights reserved. No part of this publication may be reproduced, stored in a retrieval system or database, or transmitted in any form or by any means, including photocopying, without written permission of the authors. Produced with financial assistance from The Couchiching Conservancy. The City of Kawartha Lakes Flora Project is sponsored by the Kawartha Field Naturalists based in Fenelon Falls, Ontario. In 2008, information about plants in CKL was scattered and scarce. At the urging of Michael Oldham, Biologist at the Natural Heritage Information Centre at the Ontario Ministry of Natural Resources and Forestry, Dale Leadbeater and Anne Barbour formed a committee with goals to: • Generate a list of species found in CKL and their distribution, vouchered by specimens to be housed at the Royal Ontario Museum in Toronto, making them available for future study by the scientific community; • Improve understanding of natural heritage systems in the CKL; • Provide insight into changes in the local plant communities as a result of pressures from introduced species, climate change and population growth; and, • Publish the findings of the project . Over eight years, more than 200 volunteers and landowners collected almost 2000 voucher specimens, with the permission of landowners. Over 10,000 observations and literature records have been databased. The project has documented 150 new species of which 60 are introduced, 90 are native and one species that had never been reported in Ontario to date. -
Native Plants for Wildlife Habitat and Conservation Landscaping Chesapeake Bay Watershed Acknowledgments
U.S. Fish & Wildlife Service Native Plants for Wildlife Habitat and Conservation Landscaping Chesapeake Bay Watershed Acknowledgments Contributors: Printing was made possible through the generous funding from Adkins Arboretum; Baltimore County Department of Environmental Protection and Resource Management; Chesapeake Bay Trust; Irvine Natural Science Center; Maryland Native Plant Society; National Fish and Wildlife Foundation; The Nature Conservancy, Maryland-DC Chapter; U.S. Department of Agriculture, Natural Resource Conservation Service, Cape May Plant Materials Center; and U.S. Fish and Wildlife Service, Chesapeake Bay Field Office. Reviewers: species included in this guide were reviewed by the following authorities regarding native range, appropriateness for use in individual states, and availability in the nursery trade: Rodney Bartgis, The Nature Conservancy, West Virginia. Ashton Berdine, The Nature Conservancy, West Virginia. Chris Firestone, Bureau of Forestry, Pennsylvania Department of Conservation and Natural Resources. Chris Frye, State Botanist, Wildlife and Heritage Service, Maryland Department of Natural Resources. Mike Hollins, Sylva Native Nursery & Seed Co. William A. McAvoy, Delaware Natural Heritage Program, Delaware Department of Natural Resources and Environmental Control. Mary Pat Rowan, Landscape Architect, Maryland Native Plant Society. Rod Simmons, Maryland Native Plant Society. Alison Sterling, Wildlife Resources Section, West Virginia Department of Natural Resources. Troy Weldy, Associate Botanist, New York Natural Heritage Program, New York State Department of Environmental Conservation. Graphic Design and Layout: Laurie Hewitt, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office. Special thanks to: Volunteer Carole Jelich; Christopher F. Miller, Regional Plant Materials Specialist, Natural Resource Conservation Service; and R. Harrison Weigand, Maryland Department of Natural Resources, Maryland Wildlife and Heritage Division for assistance throughout this project. -
The History and Eponymy of the Common Name Joe-Pye-Weed for Eutrochium Species (Asteraceae)
2017 THE GREAT LAKES BOTANIST 177 JOE PYE, JOE PYE’S LAW, AND JOE-PYE-WEED: THE HISTORY AND EPONYMY OF THE COMMON NAME JOE-PYE-WEED FOR EUTROCHIUM SPECIES (ASTERACEAE) Richard B. Pearce James S. Pringle 1025½ 4th Street Royal Botanical Gardens Galena, Illinois 61036-2609, U.S.A. P.O. Box 399 [email protected] Hamilton, Ontario, Canada L8N 3H8 [email protected] ABSTRACT Published accounts have differed greatly with regard to the origin of the common name Joe-Pye- weed, which is applied to Eutrochium spp. (Asteraceae: Eupatorieae). Discrepancies have long ex - isted as to the race of the man for whom Joe-Pye-weed was named, the century and the part of the country in which he lived, and even whether the plant name was derived from the name of any per - son, real or fictional. Our investigation has indicated that this plant name is from the cognomen of Joseph Shauquethqueat, an 18th- and early 19th-century Mohican sachem, who lived successively in the Mohican communities at Stockbridge, Massachusetts, and New Stockbridge, New York. KEYwORDS : Eutrochium, common name, Joe-Pye-weed, Shauquethqueat INTRODUCTION The common name Joe-Pye-weed is applied collectively to a group of closely related North American species in the family Asteraceae, tribe Eupatorieae, his - torically included in Eupatorium L. but now generally segregated as Eutrochium Raf. , following studies by Schilling et al. (1999) and Lamont (2004). Several other vernacular names have been applied to these plants in the past, but, as noted by Borland (1964), the name Joe-Pye-weed is the only one that remains in common use.