Lung Growth and Lung Function Alter A) Fetal Lamb Tracheal Occlusion
Total Page:16
File Type:pdf, Size:1020Kb
• Lung Growth and Lung Function Alter a) Fetal Lamb Tracheal Occlusion and Exogenous Surfactant at Birth in Congenital Diaphragmatic Hernia and b) Selective Perfluorocarbon Distention in Healthy Newborn Piglets Andreana Bütter Department ofExperimental Surgery McGill University, Montreal • Submitted June, 2001 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment ofthe requirements ofthe degree ofMaster ofScience © Andreana Bütter, 2001 • Nationallibrary BibbolhèQue nationale 1+1 of·Canada duClnadi Acquisitions et services bibliographiques _.rueW~ 0ftaM ON K1A ClN4 0INdlI The author bas anmted a DOD L'auteur a acconIé une licence DOn Bdusiwlicence aBowÎDI the exclusive pametbmt à la Natioual LiI:ny ofCuada to Biblioth6que DltiODlle du CaDada de œproduco, 1oaD, distribute or sen reproduire, Jdter. distribua- ou copi. oItbis tbesis ÎD microfonn, vendre des caP- de celte daàe sous pep«or electrorûc formats. la forme de mic:rofidleIfiJ de reproduction sur papier ou sur format Sectronique. The author ret- 0WMrSbip ofthe L'auteur CODIeI'W la propri6t6 .. copyriabt in tbis thesïs. Neitber the droit d'auteur qui P'Otèae cette". thesis .......tiaI exIrads hmil Ni la th6se Di des eJdJills substantiels may be priDted or otbawise de ceJle.ci De doiwDt an impIimés reproduced without the 8UthÔr's ou autremeoI repJoduits saas son permission. autorisation. 0-612-B0111-X Canadl TABLE OF CONTENTS Page Abstract 3 Abrégé 4 • Acknowledgements 5 Dedication 6 Abbreviations 7 Introduction 9 Review ofthe Literature: A. Normal Lung Development 11 B. Normal Diaphragm Development 12 C. Pathophysiology ofCDH 12 D. Animal Models ofCDH 14 E. Prenatal Interventions to Treat CDH 1. Tracheal Occlusion 14 2. Glucocorticoids 16 F. Postnatal Interventions to Treat CDH • 1. Exogenous Surfactant At Birth 17 2. Selective Pulmonary Distention as a Means ofAccelerating Lung Growth 19 G. What Remains to Be Done 21 Materials and Methods 23 Results 34 Conclusion 38 Summary 43 References 44 Tables 54 Figures 56 • 2 ABSTRACT: This study sought to maximize prenatal and postnatal interventions in order to accelerate lung growth and improve lung function in two animal models. Prenatal • interventions consisted of fetal tracheal occlusion (TO), antenatal glucocorticoids and exogenous surfactant at birth (SURF) in an ovine model of congenital diaphragmatic hemia (CDH). CDH, CDH+TO, CDH+SURF, CDH+TO+SURF and unoperated twin control lambs were compared. Prenatal growth of both lungs was accelerated after fetal TO. Prophylactic surfactant did not improve gas exchange or ventilation but did increase lung compliance over 8 hours. The incidence of tension pneumothoraces was slightly decreased after exogenous surfactant. Fetal TO yields the best results in terms of overall postnatallung function, likely acting via surfactant independent mechanisms. Postnatal intervention involved perfluorocarbon (PFC) liquid distention of the right upper lobe in healthy newbom piglets. Postnatal lung growth, as measured indirectly by rates ofDNA synthesis, was not accelerated after PFC distention. • • 3 ABRÉGÉ Cette étude utilise des thérapies pré- et post-natales dans le but d'accélerer la croissance pulmonaire tout en améliorant la fonction pulmonaire dans 2 modèles • animaux. Dans un premier temps, les effets de diverses therapies pré-natales, dont l'occlusion de la trachée foétale (OT) et l'administration anténatale de glucocorticoides et de surfactant (SURF), a été étudiée dans un modèle ovin de hernie diaphragmatique congénitale (HDC). Cinq groupes expérimentaux ont été comparés: (a) HDC, (b) HDC+OT, (c) HDC+SURF, (d) HDC+TO+SURF et (e) un groupe contrôle. Seule l'OT, et non le traitment avec du surfactant, a accéleré la croissance pulmonaire. Malgré l'addition de surfactant, seulement la compliance pulmonaire, et non l'échange gazeux ni la ventilation, s'est amélioré au cours d'une période de huit heures. L'incidence de pneumothorax est un peu moins après le surfactant. L'OT produit les meilleurs résultats en ce qui concerne la fonction pulmonaire postnatale. On croit que des mécanismes indépendants du surfactant sont responsables de ces améliorations. Dans un deuxième temps, nous avons utilisé une thérapie post-natale dans le but d'accélerer la croissance pulmonaire. La distension du lobe supérieur droit (LSD) a été accomplie avec le liquide perfluorocarbon (PFC). Le taux de synthèse d'ADN n'a pas augmenté de façon significative après ce traitement. 4 ACKNOWLEDGEMENTS l would like to thank the following individuals for their invaluable help over the last year: • Dr. Hélène Flageole and Dr. Jean-Martin Laberge, my supervisors, for their constant encouragement, incredible support and infectious enthusiasm throughout the year. Their ability to transform potentially frustrating research experiments into an extremely enjoyable and rewarding experience is remarkable and highly commendable! Dr. Bruno Piedboeuf and Stéphane Guay for their work on the molecular aspects of this project Dr. Lajos Kovacs and Dr. Daniel Faucher for attending the numerous lamb resuscitations and providing expert advice on neonatal anaesthesia, ventilation and surfactant administration Steve, Anie, Diana and Cynthia, the animal care technicians at the MacIntyre Animal • Ressource Centre, for their help with the lamb experiments throughout the year Dr. Ioana Bratu for developing the resuscitation protocol in the CDH lamb and generating the data on three ofthe experimental groups Dr. Aurore Côté and Brian Meehan for their expert advice and assistance with the piglet model Dr. Xinying He for paraffin embedding, cutting and H & E staining the lung tissue from both animaIs Dr. David Bjarneson from BLES Biochemicals Inc. for graciously donating the BLES surfactant The Division ofGeneral Surgery at the University ofWestem Ontario for allowing me to • pursue my research year at the Montreal Children's Hospital 5 DEDICATION To Sean, whom l love very much and who never let the 401 come between us! • • 6 ABBREVIATIONS AaDOz = alveolar-arterial oxygen gradient • ABG = arterial blood gas BAL = bronchoalveolar lavage CDH = congenital diaphragmatic hernia CMV = conventional mechanical ventilation CPM = counts per minute DBP = diastolic blood pressure ECMO or ECLS = extracorporeal membrane oxygenation or life support ET = endotracheal FiOz = fraction ofinspired oxygen HR = heart rate • lM = intramuscular IV = intravenous LPS = left posterior segment ofleft upper lobe LIS ratio = lecithin-sphingomyelin ratio LUL = left upper lobe LW/BW ratio = lung weight-to-body weight ratio MAP = mean arterial pressure MTBD = mean terminal bronchiole density MVI = modified ventilatory index NaHC03 = sodium bicarbonate 01 = oxygenation index • PaCOz = partial pressure ofarterial carbon dioxide 7 Pa02 = partial pressure ofarterial oxygen • Paw = airway pressure PEEP = positive end-expiratory pressure PFC = per:tluorocarbon liquid PIP = peak inspiratory pressure PPHN = persistent pulmonary hypertension RPS = right posterior segment ofright upper lobe RR = respiratory rate RUL = right upper lobe Sa02 = arterial oxygen saturation SBP = systolic blood pressure SEM = standard error ofthe mean • SURF = surfactant VEI = ventilatory efficiency index TO = tracheal occlusion • 8 INTRODUCTION: Congenital diaphragmatic hernia, or CDH, remams a challenging neonatal condition to treat succesfully. CDH occurs in 1 in 2000-4000 live births (1-2). It • manifests around the 10th week of gestation when the fetal diaphragm fails to develop properly. Persistent communication between the fetal chest and abdominal cavity results, allowing intestinal contents to remain in the chest for the duration of the pregnancy. Growth of both lungs is then limited by lack of intrathoracic space. At birth, the CDH fetus possesses small, immature lungs which have difficulty adapting to extra-uterine life. Acute respiratory failure often develops with death occuring in 30-50% ofthese neonates (3). Despite many advances in neonatal care, mortality rates have remained at these e1evated levels. Prenatal ultrasound can diagnose fetuses with CDH in up to 93% of cases (4) and as early as the 16th week of gestation (5). If the mother e1ects to continue with the pregnancy, postnatal treatment with or without prenatal intervention is possible. Standard postnatal care involves the use of mechanical ventilation, either conventional (CMV) or high frequency (HFV), with or without nitric oxide (NO) followed by delayed repair of • the diaphragmatic defect (6-12). Extracorporeal membrane oxygenation (ECMO) may also be required and can increase survival in selected patients (13-17). However, ECMO is limited in that it cannot increase lung growth and the morbidity and mortality associated with ECMO remains significant (18). Liquid distention, using perfluorocarbon (PFC) liquid, is hypothesized to accelerate postnatal lung growth via stretch induced mechanisms. For CDH neonates, increased lung growth could translate into decreased time spent on ECMO with subsequent decreases in associated morbidity and mortality. Postnatal distention could be offered to those newboms with CDH who were never diagnosed prenatally and consequently, could never be offered fetal surgery. Prenatal intervention, in the form of fetal surgery, is only indicated for poor prognosisCDH babies i.e. those diagnosed prior to 25 weeks gestation with liver hemiation into their chest and a lung-head ratio less than 1 (19-20). Although in utero repair of the diaphragmatic defect has been attempted (21-22),