TNF-A Antibody Therapy in Combination with the T-Cell–Specific Antibody Anti-TCR Reverses the Diabetic Metabolic State in the LEW.1AR1-Iddm Rat

Total Page:16

File Type:pdf, Size:1020Kb

TNF-A Antibody Therapy in Combination with the T-Cell–Specific Antibody Anti-TCR Reverses the Diabetic Metabolic State in the LEW.1AR1-Iddm Rat 2880 Diabetes Volume 64, August 2015 Anne Jörns,1,2 Ümüs Gül Ertekin,1 Tanja Arndt,1 Taivankhuu Terbish,1 Dirk Wedekind,3 and Sigurd Lenzen1 TNF-a Antibody Therapy in Combination With the T-Cell–Specific Antibody Anti-TCR Reverses the Diabetic Metabolic State in the LEW.1AR1-iddm Rat Diabetes 2015;64:2880–2891 | DOI: 10.2337/db14-1866 Anti–tumor necrosis factor-a (TNF-a) therapy (5 mg/kg b-cell death (1–3). The infiltrate in the pancreatic islets is body weight), alone or combined with the T-cell–specific composed of different immune cell types, especially macro- antibody anti–T-cell receptor (TCR) (0.5 mg/kg body phages and T cells (2–4). Upon activation, the immune cells weight), was performed over 5 days immediately after release proinflammatory cytokines and other cytotoxic disease manifestation to reverse the diabetic metabolic mediators, causing b-cell apoptosis (3,5). state in the LEW.1AR1-iddm rat, an animal model of hu- Effective prevention strategies require a combination man type 1 diabetes. Only combination therapy starting therapy (6–8) to target the proinflammatory cytokines pro- at blood glucose concentrations below 15 mmol/L re- duced in the different immune cell types. Of crucial impor- stored normoglycemia and normalized C-peptide. In- tance is in this context the proinflammatory cytokine tumor b creased -cell proliferation and reduced apoptosis led necrosis factor-a (TNF-a). It is expressed in all immune cell to a restoration of b-cell mass along with an immune types infiltrating the pancreatic islets in patients with T1D ISLET STUDIES cell infiltration–free pancreas 60 days after the end as well as in the spontaneous mouse (NOD mouse) and rat of therapy. This combination of two antibodies, anti- (BB, Komeda, and LEW.1AR1-iddm rats) models (3,9). TCR/CD3, as a cornerstone compound in anti–T-cell Cumulative evidence from studies in a variety of other therapy, and anti–TNF-a, as the most prominent and a autoimmune diseases supports the contention that the effective therapeutic antibody in suppressing TNF- fl action in many autoimmune diseases, was able to re- in ammatory process in the affected organs always goes – – verse the diabetic metabolic state. With increasing along with a high TNF-a expression (9 13). Anti TNF-a blood glucose concentrations during the disease pro- therapy is therefore an established therapeutic principle – fl gression, however, the proapoptotic pressure on the (14 16) in rheumatoid arthritis, in ammatory bowel dis- residual b-cell mass increased, ultimately reaching eases, lupus erythematosus, Sjögren syndrome, psoriasis, a point where the reservoir of the surviving b-cells was and Hashimoto thyroiditis (10,15,17). insufficient to allow a restoration of normal b-cell mass Anti–TNF-a monotherapy in T1D is ineffective (18–21) through regeneration. The present results may open and may even aggravate the disease (22,23). It is probably a therapeutic window for reversal of diabetic hyper- not surprising in an autoimmune disease such as T1D, in glycemia in patients, worthwhile of being tested in which the pancreatic b-cells are so extremely vulnerable clinical trials. (24), that these cells not only become dysfunctional but are also quickly destroyed. As has been documented in diabetic LEW.1AR1-iddm Type 1 diabetes (T1D) is an immune cell–mediated disease (IDDM) rats, as well as in pancreases from patients with that causes insulin dependence due to selective pancreatic T1D (3), the islet-infiltrating immune cells produce and 1Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany This article contains Supplementary Data online at http://diabetes 2Centre for Anatomy, Hannover Medical School, Hannover, Germany .diabetesjournals.org/lookup/suppl/doi:10.2337/db14-1866/-/DC1. 3 Institute for Laboratory Animal Science, Hannover Medical School, Hannover, A.J. and Ü.G.E. contributed equally to this work. Germany © 2015 by the American Diabetes Association. Readers may use this article as Corresponding author: Sigurd Lenzen, [email protected]. long as the work is properly cited, the use is educational and not for profit, and Received 9 December 2014 and accepted 11 March 2015. the work is not altered. diabetes.diabetesjournals.org Jörns and Associates 2881 release, along with interleukin (IL)-1b, TNF-a as the dom- previously described (36). To identify changes in the inating proinflammatory cytokine (3,5,25). pancreatic islets, one biopsy was collected on the day Combination therapies, at variance from monothera- of T1D manifestation, immediately before the start of pies, have shown promising results in T1D (25–29) therapy, and another at the end of therapy; the remaining and other autoimmune diseases (11,14,15). We there- pancreas, comprising head and tail, pancreas-draining fore investigated in the IDDM rat, an animal model of lymph nodes, and serum, were collected 60 days after humanT1D,whichmirrorsthe human T1D situation the end of therapy (25). Tissue specimens were fixed for most closely (3,5,30,31), whether a combination therapy microscopic analyses (25,36). Blood glucose concentrations of anti–TNF-a, which suppresses TNF-a release from all were determined daily (Glucometer Elite; Bayer, Leverkusen, immune cells, with anti–T-cell receptor (TCR), which Germany). Serum C-peptide was analyzed with a rat-specific suppresses proinflammatory cytokine release from ac- ELISA (Mercodia, Uppsala, Sweden) and serum cytokine pro- tivated T cells, can be successful. Anti-TCR is an anti- tein concentrations with a multiplex immunoassay kit (Bio- body against T cells that binds to an epitope of the Rad, Munich, Germany) (25,36). a/b-chains of the TCR (32). It is comparable in action Morphological Analyses to anti-CD3, which binds to the ´-chain of the CD3 Serial sections were stained with the avidin-biotin com- molecule (33). Both antibodies bind noncovalently to plex method or the double-immunofluorescence tech- the TCR/CD3 complex and modulate T cells by affect- nique with primary antibodies for b-cells and immune ing the trans-signaling pathway (32,33). Anti-TCR is cells (3,36). The antibodies against TNF-a and T cells used in rats because anti-CD3 is available for mice recognized epitopes other than those targeted by the (33) and humans (33,34) but not for rats (25,35). We antibodies used for therapy. b-Cell apoptosis was quan- show in this study that this combination therapy tified by TUNEL (Roche, Mannheim, Germany), as well scheme is capable of successfully reversing the diabetic as proliferation by a double staining with Ki67 antibody metabolic state. (COOH-terminal; Acris, Herford, Germany) and insulin – RESEARCH DESIGN AND METHODS (D3E7; AbD Serotec). At each time point, 25 40 pan- creatic islets were studied (25,36). A minimum of 1,000 Animals b-cells were counted in the proliferation and apoptosis Congenic rats (for details see http://www.mh-hannover analyses (25,36). Islet infiltration was scored as de- .de/3642.html) were bred and maintained as described scribed (25). The b-cell mass, identified by insulin and (25,30). Experimental procedures were approved by the GLUT2 staining on sequential sections, was calculated District Government of Hannover (LAVES, nos. 33-42502- by the ratio of the b-cell area (mm2)tothewholepan- 05/958 and 509.6-42502-03/684). creatic area, determined four times in distances of 100 Experimental Groups mm each and multiplied by the pancreas weight. Anal- Four experimental groups were studied. Group 1 (n =5) yses were performed using an Olympus BX61 micro- comprised healthy, normoglycemic IDDM rats without scope (25,36). therapy; group 2 (n = 12) comprised acutely diabetic In Situ RT-PCR IDDM rats treated for 5 consecutive days with rat- Pancreatic sections from all experimental groups were specificanti–TNF-a (5 mg/kg body weight [bw] i.v.; pro- placed on three-chamber slides. The in situ RT-PCR vided by Janssen Research & Development, Spring analysis was performed on a special thermal cycler (MJ House,PA).Group3(n = 12) comprised diabetic rats Research, Waltham, MA) (25,36). Primer sequences are treated for 5 consecutive days with anti–TNF-a and in provided in Supplementary Table 2. addition with anti-TCR (0.5 mg/kg bw i.v.) (R73; AbD Serotec, Munich, Germany). Group 4 (n =5)comprised Real-time RT-PCR untreated diabetic IDDM rats. All therapies were started The quality of the mRNA isolated from pancreas- within 1 day after T1D onset at blood glucose concen- draining lymph nodes was controlled with the Experion trations .10mmol/L.Animalsingroups1and4re- electrophoresis system (Bio-Rad). mRNA was quanti- ceived 0.9% NaCl solution. Anti-TCR causes slight fied in real-time RT-PCR reactions performed with the lymphocyte reduction in the periphery (,20%), which DNA Engine Opticon fluorescence detection system disappears within 1 week after cessation of therapy (MJ Research) (36). Primer sequences are provided in (25). Anti–TNF-a was without effect and also did not Supplementary Table 3. further reduce the lymphocyte count in combination Statistics therapy with anti-TCR (data not shown). The CD4-to- Results are presented as mean values 6 SEM. Compari- CD8 T-cell ratios were not affected by any of the treat- sons among the different therapy groups and the normo- ments (Supplementary Table 1). glycemic or diabetic control rats were analyzed with the Pancreatic Biopsies and Tissue Processing Mann-Whitney U test and ANOVA, and correlation coef- Biopsies of tissue (30 mg) were obtained from the pan- ficients were calculated according to Pearson with the creas tail of each animal under isoflurane anesthesia as Prism 5 program (GraphPad Inc., San Diego, CA). 2882 TNF-a/Anti-TCR Therapy Reverses Diabetic State Diabetes Volume 64, August 2015 RESULTS both parameters in the diabetic rats.
Recommended publications
  • Fig. L COMPOSITIONS and METHODS to INHIBIT STEM CELL and PROGENITOR CELL BINDING to LYMPHOID TISSUE and for REGENERATING GERMINAL CENTERS in LYMPHATIC TISSUES
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ 23 February 2012 (23.02.2012) WO 2U12/U24519ft ft A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/048297 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 August 201 1 (18.08.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/374,943 18 August 2010 (18.08.2010) US kind of regional protection available): ARIPO (BW, GH, 61/441,485 10 February 201 1 (10.02.201 1) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/449,372 4 March 201 1 (04.03.201 1) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventor; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant : DEISHER, Theresa [US/US]; 1420 Fifth LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Avenue, Seattle, WA 98101 (US).
    [Show full text]
  • Of Anti-CD3 Action? This Information Is Current As of September 26, 2021
    Differential Response of Regulatory and Conventional CD4 + Lymphocytes to CD3 Engagement: Clues to a Possible Mechanism of Anti-CD3 Action? This information is current as of September 26, 2021. Li Li, Junko Nishio, André van Maurik, Diane Mathis and Christophe Benoist J Immunol published online 28 August 2013 http://www.jimmunol.org/content/early/2013/08/27/jimmun ol.1300408 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/28/jimmunol.130040 Material 8.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 28, 2013, doi:10.4049/jimmunol.1300408 The Journal of Immunology Differential Response of Regulatory and Conventional CD4+ Lymphocytes to CD3 Engagement: Clues to a Possible Mechanism of Anti-CD3 Action? Li Li,* Junko Nishio,* Andre´ van Maurik,† Diane Mathis,* and Christophe Benoist* Several clinical trials have shown anti-CD3 treatment to be a promising therapy for autoimmune diabetes, but its mechanism of action remains unclear.
    [Show full text]
  • Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
    REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet.
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • Antigen-Targeted Monoclonal Antibody Otelixizumab and C
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/10/17/jpet.115.224899.DC1 1521-0103/355/2/199–205$25.00 http://dx.doi.org/10.1124/jpet.115.224899 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 355:199–205, November 2015 Copyright ª 2015 by The American Society for Pharmacology and Experimental Therapeutics Temporal Pharmacokinetic/Pharmacodynamic Interaction between Human CD3« Antigen–Targeted Monoclonal Antibody Otelixizumab and CD3« Binding and Expression in Human Peripheral Blood Mononuclear Cell Static Culture s Kevin R. Page, Enrica Mezzalana, Alexander J. MacDonald, Stefano Zamuner, Giuseppe De Nicolao, and Andre van Maurik GlaxoSmithKline, Stevenage, United Kingdom (K.R.P., A.J.M., S.Z., A.vM.); University of Pavia, Pavia PV, Italy (E.M., G.D.N.) Received April 22, 2015; accepted August 17, 2015 Downloaded from ABSTRACT Otelixizumab is a monoclonal antibody (mAb) directed to human a shorter apparent half-life at low concentration. Correspondingly, CD3«, a protein forming part of the CD3/T-cell receptor (TCR) a rapid, otelixizumab concentration–, and time-dependent re- complex on T lymphocytes. This study investigated the temporal duction in CD3/TCR expression was observed. These combined interaction between varying concentrations of otelixizumab, bind- observations were consistent with the phenomenon known as jpet.aspetjournals.org ing to human CD3 antigen, and expression of CD3/TCR complexes target-mediated drug disposition (TMDD). A mechanistic, mathe- on lymphocytes in vitro, free from the confounding influence of matical pharmacokinetic/pharmacodynamic (PK/PD) model was changing lymphocyte frequencies observed in vivo.
    [Show full text]
  • Antibody Engineering to Develop New Antirheumatic Therapies John D Isaacs
    Available online http://arthritis-research.com/content/11/3/225 Review Antibody engineering to develop new antirheumatic therapies John D Isaacs Wilson Horne Immunotherapy Centre and Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle-Upon-Tyne, NE2 4HH, UK Corresponding author: John D Isaacs, [email protected] Published: 19 May 2009 Arthritis Research & Therapy 2009, 11:225 (doi:10.1186/ar2594) This article is online at http://arthritis-research.com/content/11/3/225 © 2009 BioMed Central Ltd Abstract the light chain two distinct domains, where a domain is a There has been a therapeutic revolution in rheumatology over the discrete, folded, functional unit (Figure 2a). The first domain past 15 years, characterised by a move away from oral immuno- in each chain is the V domain, VH and VL on the heavy and suppressive drugs toward parenteral targeted biological therapies. light chains, respectively. The rest of the heavy chain The potency and relative safety of the newer agents has facilitated comprises three (four for IgE) constant domains (CH1 to a more aggressive approach to treatment, with many more patients CH3), whilst the light chains have one constant domain (CL). achieving disease remission. There is even a prevailing sense that There is a flexible peptide segment (the hinge) between the disease ‘cure’ may be a realistic goal in the future. These develop- ments were underpinned by an earlier revolution in molecular CH1 and CH2 domains. biology and protein engineering as well as key advances in our understanding of rheumatoid arthritis pathogenesis. This review will The antibody V region is composed of the VH and VL focus on antibody engineering as the key driver behind our current domains.
    [Show full text]
  • INN Working Document 05.179 Update 2011
    INN Working Document 05.179 Update 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 2011 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Essential Medicines and Pharmaceutical Policies (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2019 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Therapeutic Monoclonal Antibodies: Past, Present, and Future
    &PART I ANTIBODY BASICS COPYRIGHTED MATERIAL &CHAPTER 1 Therapeutic Monoclonal Antibodies: Past, Present, and Future WILLIAM R. STROHL 1.1 Introduction 4 1.2 Historical Aspects 19 1.2.1 Historical Aspects: Origins of Serum Therapy, Forerunner to the Monoclonal Antibody Business 20 1.2.2 IVIG Therapeutics and Prophylactics 21 1.3 Technologies Leading to the Current Monoclonal Antibody Engineering 23 1.3.1 Fundamental Breakthroughs Allowing for Recombinant Monoclonal Antibodies 23 1.3.2 Hybridoma Technology 23 1.3.3 Transfectomas and Chimeric Antibodies 24 1.3.4 Humanization Technology 24 1.3.5 Humanized Mice 25 1.3.6 Phage Display Technology 26 1.3.7 Human Antibody Libraries 27 1.3.8 Summary of Core Therapeutic Mab Technologies Leading to Therapeutics 28 1.4 From Biotechnology to BioPharma 28 1.4.1 From OKT3 to Remicade: Early Successes and Disappointments 28 1.4.2 Examples of Other Early Mabs 29 1.4.3 Evolution of the Biotechnology Industry to the New BioPharma Industry 31 1.5 Challenges and Opportunities for Monoclonal Antibodies 32 1.5.1 SWOT Analysis 32 1.5.2 Competition on “Hot” Targets 32 1.5.3 Targets 33 1.5.4 Differentiation and Fit-for-Purpose Biologics 35 1.6 Summary, and “Where Do We Go From Here” 42 References 43 ABSTRACT In this chapter, an overview of the therapeutic antibody industry today, including the many commercial antibodies and Fc fusions and the rich clinical pipeline, is presented and analyzed. The long history of antibodies is given to bring context to the therapeutic antibody industry.
    [Show full text]
  • Zacks Small-Cap Research April 12, 2021
    Zacks Small-Cap Research April 12, 2021 Sponsored – Impartial – Comprehensive John D. Vandermosten, CFA 312-265-9588 / [email protected] scr.zacks.com 10 S. Riverside Plaza, Suite 1600, Chicago, IL 60606 Tiziana Life Sciences PLC (TLSA - NASDAQ) INITIATION In A Tizzy about Tiziana Tiziana is a research and development company developing three main candidates for a variety of indications in autoimmune disease, cancer and COVID. The lead candidate, foralumab, is a fully human anti-CD3 Based on our DCF model and a 15% discount rate, Tiziana is antibody, being investigated in multiple sclerosis (MS), Crohn’s disease valued at approximately $7.50 per ADR share. Our model ap- (CD) and COVID, administered intranasally and orally via enteric coated capsules. milciclib is the second candidate and is being investigated as a plies a 15% probability of ultimate approval and commercializa- tion for the portfolio of assets including foralumab and milciclib. combination product in multiple oncology indications. The third candi- The model includes contributions from the United States and date, TZLS-501, is an anti-IL-6R receptor antibody expected to be the subject of an IND submitted in 2021. TZLS-501 is being investigated as a global developed markets. treatment for COVID and other pulmonary diseases such as ARDS. Ph2 foralumab clinical trials for MS and CD are targeted for 2021 & Ph2 combination trials for milciclib in coming quarters. Tiziana differentiates Current Price (4/9/2021) $2.67 itself in the use of intranasal, oral and inhaled formulations of mAbs that are able to avoid shortcomings of infused & subcutaneous administra- Valuation $7.50 tion.
    [Show full text]
  • Combination Therapies in the Context of Anti-CD3 Antibodies for the Treatment of Autoimmune Diseases
    Review article | Published 28 November 2012, doi:10.4414/smw.2012.13711 Cite this as: Swiss Med Wkly. 2012;142:w13711 Combination therapies in the context of anti-CD3 antibodies for the treatment of autoimmune diseases Yann Dean, Fabien Dépis, Marie Kosco-Vilbois NovImmune SA, Plan-Les-Ouates, Switzerland Summary against the epsilon chain of the CD3-TCR complex, which is expressed on mature T cells. Muromomab exerts po- Non-Fc receptor binding anti-CD3 antibodies are in clinic- tent immunosuppressive effects via two mechanisms, (1.) T al development for the treatment of autoimmune diseases. cells are transiently eliminated from the circulation as a res- Results from phase 1/2 clinical trials suggest that teplizu- ult of cell margination and cell death, while a fraction of T mab and otelixizumab preserve residual beta-cell function cells are actually depleted in tissues, and (2.) remaining and in patients with recent onset type 1 diabetes. Similarly, en- re-appearing T cells transiently persist as CD3-TCR negat- couraging results from phase 1/2 clinical trials have been ive (a phenomenon termed antigenic modulation) and thus reported for visilizumab and foralumab in patients with in- are unable to form an immune synapse with cells present- flammatory bowel disease. However, these CD3-directed ing antigenic peptides. The outcome of antigenic modu- therapies have recently suffered setbacks due to the repor- lation is that T cells can no longer be triggered by the ted inefficacy results observed during phase 2/3 clinical transplanted alloantigens. T cell function returns to nor- trials due to low dosages or inappropriate clinical end- mal within days after cessation of antibody administration.
    [Show full text]