T01 Amplitude modes in cold atoms S.D. Huber, Institute for Theoretical Physics, ETH Zurich E-mail address:
[email protected] The Bose Hubbard model exhibits a quantum phase transition between an insulating Mott state and a superfluid. We aim at the determination of the excitation spectrum of the superfluid phase, in particular its evolution from the vicinity of the Mott phase towards the weakly interacting regime. Furthermore, we discuss a method allowing to observe our findings in an experiment. We make the link between our microscopic findings and the notion of a “Higgs” mode. Specifically, we highlight the role of emergent symmetries. Recent developments in the description of amplitude modes in exotic chiral Mott insulators will be mentioned. [1] S.D. Huber, E. Altman, H.P. Buchler,¨ and G. Blatter, Phys. Rev. B, 75 085106 (2007) [2] S.D. Huber, B. Theiler, E. Altman, G. Blatter, Phys. Rev. Lett., 100 050404 (2008) [3] S.D. Huber and N.H. Lindner, Proc. Natl. Acad. Sci. USA, 108 19925 (2011) T02 Higgs mode and universal dynamics near quantum criticality D. Podolsky Department of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel E-mail address:
[email protected] The Higgs mode is a ubiquitous collective excitation in condensed matter systems with broken continuous symmetry. Its detection is a valuable test of the corresponding field theory, and its mass gap measures the proximity to a quantum critical point. However, since the Higgs mode can decay into low energy Goldstone modes, its experimental visibility has been questioned. In this talk, I will show that the visibility of the Higgs mode depends on the symmetry of the measured susceptibility.