Principal Component Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basic Concepts of Linear Algebra by Jim Carrell Department of Mathematics University of British Columbia 2 Chapter 1
1 Basic Concepts of Linear Algebra by Jim Carrell Department of Mathematics University of British Columbia 2 Chapter 1 Introductory Comments to the Student This textbook is meant to be an introduction to abstract linear algebra for first, second or third year university students who are specializing in math- ematics or a closely related discipline. We hope that parts of this text will be relevant to students of computer science and the physical sciences. While the text is written in an informal style with many elementary examples, the propositions and theorems are carefully proved, so that the student will get experince with the theorem-proof style. We have tried very hard to em- phasize the interplay between geometry and algebra, and the exercises are intended to be more challenging than routine calculations. The hope is that the student will be forced to think about the material. The text covers the geometry of Euclidean spaces, linear systems, ma- trices, fields (Q; R, C and the finite fields Fp of integers modulo a prime p), vector spaces over an arbitrary field, bases and dimension, linear transfor- mations, linear coding theory, determinants, eigen-theory, projections and pseudo-inverses, the Principal Axis Theorem for unitary matrices and ap- plications, and the diagonalization theorems for complex matrices such as the Jordan decomposition. The final chapter gives some applications of symmetric matrices positive definiteness. We also introduce the notion of a graph and study its adjacency matrix. Finally, we prove the convergence of the QR algorithm. The proof is based on the fact that the unitary group is compact. -
Chapter 8. Eigenvalues: Further Applications and Computations
8.1 Diagonalization of Quadratic Forms 1 Chapter 8. Eigenvalues: Further Applications and Computations 8.1. Diagonalization of Quadratic Forms Note. In this section we define a quadratic form and relate it to a vector and ma- trix product. We define diagonalization of a quadratic form and give an algorithm to diagonalize a quadratic form. The fact that every quadratic form can be diago- nalized (using an orthogonal matrix) is claimed by the “Principal Axis Theorem” (Theorem 8.1). It is applied in Section 8.2 to address quadratic surfaces. Definition. A quadratic form f(~x) = f(x1, x2,...,xn) in n variables is a polyno- mial that can be written as n f(~x)= u x x X ij i j i,j=1; i≤j where not all uij are zero. Note. For n = 2, a quadratic form is f(x, y)= ax2 + bxy + xy2. The graph of such an equation in the xy-plane is a conic section (ellipse, hyperbola, or parabola). For n = 3, we have 2 2 2 f(x1, x2, x3)= u11x1 + u12x1x2 + u13x1x3 + u22x2 + u23x2x3 + u33x2. We’ll see in the next section that the graph of f(x1, x2, x3) is a quadric surface. We 8.1 Diagonalization of Quadratic Forms 2 can easily verify that u11 u12 u13 x1 [f(x1, x2, x3)]= [x1, x2, x3] 0 u22 u23 x2 . 0 0 u33 x3 Definition. In the quadratic form ~xT U~x, the matrix U is the upper-triangular coefficient matrix of the quadratic form. Example. Page 417 Number 4(a). -
Effect of Distance Measures on Partitional Clustering Algorithms
Sesham Anand et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5308-5312 Effect of Distance measures on Partitional Clustering Algorithms using Transportation Data Sesham Anand#1, P Padmanabham*2, A Govardhan#3 #1Dept of CSE,M.V.S.R Engg College, Hyderabad, India *2Director, Bharath Group of Institutions, BIET, Hyderabad, India #3Dept of CSE, SIT, JNTU Hyderabad, India Abstract— Similarity/dissimilarity measures in clustering research of algorithms, with an emphasis on unsupervised algorithms play an important role in grouping data and methods in cluster analysis and outlier detection[1]. High finding out how well the data differ with each other. The performance is achieved by using many data index importance of clustering algorithms in transportation data has structures such as the R*-trees.ELKI is designed to be easy been illustrated in previous research. This paper compares the to extend for researchers in data mining particularly in effect of different distance/similarity measures on a partitional clustering algorithm kmedoid(PAM) using transportation clustering domain. ELKI provides a large collection of dataset. A recently developed data mining open source highly parameterizable algorithms, in order to allow easy software ELKI has been used and results illustrated. and fair evaluation and benchmarking of algorithms[1]. Data mining research usually leads to many algorithms Keywords— clustering, transportation Data, partitional for similar kind of tasks. If a comparison is to be made algorithms, cluster validity, distance measures between these algorithms.In ELKI, data mining algorithms and data management tasks are separated and allow for an I. INTRODUCTION independent evaluation. -
BETULA: Numerically Stable CF-Trees for BIRCH Clustering?
BETULA: Numerically Stable CF-Trees for BIRCH Clustering? Andreas Lang[0000−0003−3212−5548] and Erich Schubert[0000−0001−9143−4880] TU Dortmund University, Dortmund, Germany fandreas.lang,[email protected] Abstract. BIRCH clustering is a widely known approach for clustering, that has influenced much subsequent research and commercial products. The key contribution of BIRCH is the Clustering Feature tree (CF-Tree), which is a compressed representation of the input data. As new data arrives, the tree is eventually rebuilt to increase the compression. After- ward, the leaves of the tree are used for clustering. Because of the data compression, this method is very scalable. The idea has been adopted for example for k-means, data stream, and density-based clustering. Clustering features used by BIRCH are simple summary statistics that can easily be updated with new data: the number of points, the linear sums, and the sum of squared values. Unfortunately, how the sum of squares is then used in BIRCH is prone to catastrophic cancellation. We introduce a replacement cluster feature that does not have this nu- meric problem, that is not much more expensive to maintain, and which makes many computations simpler and hence more efficient. These clus- ter features can also easily be used in other work derived from BIRCH, such as algorithms for streaming data. In the experiments, we demon- strate the numerical problem and compare the performance of the orig- inal algorithm compared to the improved cluster features. 1 Introduction The BIRCH algorithm [23,24,22] is a widely known cluster analysis approach, that won the 2006 SIGMOD Test of Time Award. -
Chapter 6 Eigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors Po-Ning Chen, Professor Department of Electrical and Computer Engineering National Chiao Tung University Hsin Chu, Taiwan 30010, R.O.C. 6.1 Introduction to eigenvalues 6-1 Motivations • The static system problem of Ax = b has now been solved, e.g., by Gauss- Jordan method or Cramer’s rule. • However, a dynamic system problem such as Ax = λx cannot be solved by the static system method. • To solve the dynamic system problem, we need to find the static feature of A that is “unchanged” with the mapping A. In other words, Ax maps to itself with possibly some stretching (λ>1), shrinking (0 <λ<1), or being reversed (λ<0). • These invariant characteristics of A are the eigenvalues and eigenvectors. Ax maps a vector x to its column space C(A). We are looking for a v ∈ C(A) such that Av aligns with v. The collection of all such vectors is the set of eigen- vectors. 6.1 Eigenvalues and eigenvectors 6-2 Conception (Eigenvalues and eigenvectors): The eigenvalue-eigenvector pair (λi, vi) of a square matrix A satisfies Avi = λivi (or equivalently (A − λiI)vi = 0) where vi = 0 (but λi can be zero), where v1, v2,..., are linearly independent. How to derive eigenvalues and eigenvectors? • For 3 × 3 matrix A, we can obtain 3 eigenvalues λ1,λ2,λ3 by solving 3 2 det(A − λI)=−λ + c2λ + c1λ + c0 =0. • If all λ1,λ2,λ3 are unequal, then we continue to derive: Av1 = λ1v1 (A − λ1I)v1 = 0 v1 =theonly basis of the nullspace of (A − λ1I) Av λ v ⇔ A − λ I v ⇔ v A − λ I 2 = 2 2 ( 2 ) 2 = 0 2 =theonly basis of the nullspace of ( 2 ) Av3 = λ3v3 (A − λ3I)v3 = 0 v3 =theonly basis of the nullspace of (A − λ3I) and the resulting v1, v2 and v3 are linearly independent to each other. -
Research Techniques in Network and Information Technologies, February
Tools to support research M. Antonia Huertas Sánchez PID_00185350 CC-BY-SA • PID_00185350 Tools to support research The texts and images contained in this publication are subject -except where indicated to the contrary- to an Attribution- ShareAlike license (BY-SA) v.3.0 Spain by Creative Commons. This work can be modified, reproduced, distributed and publicly disseminated as long as the author and the source are quoted (FUOC. Fundació per a la Universitat Oberta de Catalunya), and as long as the derived work is subject to the same license as the original material. The full terms of the license can be viewed at http:// creativecommons.org/licenses/by-sa/3.0/es/legalcode.ca CC-BY-SA • PID_00185350 Tools to support research Index Introduction............................................................................................... 5 Objectives..................................................................................................... 6 1. Management........................................................................................ 7 1.1. Databases search engine ............................................................. 7 1.2. Reference and bibliography management tools ......................... 18 1.3. Tools for the management of research projects .......................... 26 2. Data Analysis....................................................................................... 31 2.1. Tools for quantitative analysis and statistics software packages ...................................................................................... -
Machine Learning for Improved Data Analysis of Biological Aerosol Using the WIBS
Atmos. Meas. Tech., 11, 6203–6230, 2018 https://doi.org/10.5194/amt-11-6203-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Machine learning for improved data analysis of biological aerosol using the WIBS Simon Ruske1, David O. Topping1, Virginia E. Foot2, Andrew P. Morse3, and Martin W. Gallagher1 1Centre of Atmospheric Science, SEES, University of Manchester, Manchester, UK 2Defence, Science and Technology Laboratory, Porton Down, Salisbury, UK 3Department of Geography and Planning, University of Liverpool, Liverpool, UK Correspondence: Simon Ruske ([email protected]) Received: 19 April 2018 – Discussion started: 18 June 2018 Revised: 15 October 2018 – Accepted: 26 October 2018 – Published: 19 November 2018 Abstract. Primary biological aerosol including bacteria, fun- The lowest classification errors were obtained using gra- gal spores and pollen have important implications for public dient boosting, where the misclassification rate was between health and the environment. Such particles may have differ- 4.38 % and 5.42 %. The largest contribution to the error, in ent concentrations of chemical fluorophores and will respond the case of the higher misclassification rate, was the pollen differently in the presence of ultraviolet light, potentially al- samples where 28.5 % of the samples were incorrectly clas- lowing for different types of biological aerosol to be dis- sified as fungal spores. The technique was robust to changes criminated. Development of ultraviolet light induced fluores- in data preparation provided a fluorescent threshold was ap- cence (UV-LIF) instruments such as the Wideband Integrated plied to the data. Bioaerosol Sensor (WIBS) has allowed for size, morphology In the event that laboratory training data are unavailable, and fluorescence measurements to be collected in real-time. -
A Study on Adoption of Data Mining Tools and Collision of Predictive Techniques
ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Website: www.ijirset.com Vol. 6, Issue 8, August 2017 A Study on Adoption of Data Mining Tools and Collision of Predictive Techniques Lavanya.M1, Dr.B.Jagadhesan2 M.Phil Research Scholar, Dhanraj Baid Jain College (Autonomous), Thoraipakkam, Chennai, India1 Associate Professor, Dhanraj Baid Jain College (Autonomous), Thoraipakkam, Chennai, India2 ABSTRACT: Data mining, also known as knowledge discovery from databases, is a process of mining and analysing enormous amounts of data and extracting information from it. Data mining can quickly answer business questions that would have otherwise consumed a lot of time. Some of its applications include market segmentation – like identifying characteristics of a customer buying a certain product from a certain brand, fraud detection – identifying transaction patterns that could probably result in an online fraud, and market based and trend analysis – what products or services are always purchased together, etc. This article focuses on the various open source options available and their significance in different contexts. KEYWORDS: Data Mining, Clustering, Mining Tools. I. INTRODUCTION The development and application of data mining algorithms requires the use of powerful software tools. As the number of available tools continues to grow, the choice of the most suitable tool becomes increasingly difficult. Some of the common mining tasks are as follows. • Data Cleaning − The noise and inconsistent data is removed. • Data Integration − Multiple data sources are combined. • Data Selection − Data relevant to the analysis task are retrieved from the database. -
Sparse Principal Component Analysis and Iterative Thresholding
Submitted to the Annals of Statistics SPARSE PRINCIPAL COMPONENT ANALYSIS AND ITERATIVE THRESHOLDING By Zongming Ma ∗ University of Pennsylvania Principal component analysis (PCA) is a classical dimension re- duction method which projects data onto the principal subspace spanned by the leading eigenvectors of the covariance matrix. How- ever, it behaves poorly when the number of features p is comparable to, or even much larger than, the sample size n. In this paper, we pro- pose a new iterative thresholding approach for estimating principal subspaces in the setting where the leading eigenvectors are sparse. Under a spiked covariance model, we find that the new approach re- covers the principal subspace and leading eigenvectors consistently, and even optimally, in a range of high-dimensional sparse settings. Simulated examples also demonstrate its competitive performance. 1. Introduction. In many contemporary datasets, if we organize the p-dimensional observations x ,...,x , into the rows of an n p data matrix 1 n × X, the number of features p is often comparable to, or even much larger than, the sample size n. For example, in biomedical studies, we usually have measurements on the expression levels of tens of thousands of genes, but only for tens or hundreds of individuals. One of the crucial issues in the analysis of such “large p” datasets is dimension reduction of the feature space. As a classical method, principal component analysis (PCA) [23, 8]reduces dimensionality by projecting the data onto the principal subspace spanned by the m leading eigenvectors of the population covariance matrix Σ, which represent the principal modes of variation. -
A Comparative Study on Various Data Mining Tools for Intrusion Detection
International Journal of Scientific & Engineering Research Volume 9, Issue 5, May-2018 1 ISSN 2229-5518 A Comparative Study on Various Data Mining Tools for Intrusion Detection 1Prithvi Bisht, 2Neeraj Negi, 3Preeti Mishra, 4Pushpanjali Chauhan Department of Computer Science and Engineering Graphic Era University, Dehradun Email: {1prithvisbisht, 2neeraj.negi174, 3dr.preetimishranit, 4pushpanajlichauhan}@gmail.com Abstract—Internet world is expanding day by day and so are the threats related to it. Nowadays, cyber attacks are happening more frequently than a decade before. Intrusion detection is one of the most popular research area which provides various security tools and techniques to detect cyber attacks. There are many ways to detect anomaly in any system but the most flexible and efficient way is through data mining. Data mining tools provide various machine learning algorithms which are helpful for implementing machine- learning based IDS. In this paper, we have done a comparative study of various state of the art data mining tools such as RapidMiner, WEKA, EOA, Scikit-Learn, Shogun, MATLAB, R, TensorFlow, etc for intrusion detection. The specific characteristics of individual tool are discussed along with its pros & cons. These tools can be used to implement data mining based intrusion detection techniques. A preliminary result analysis of three different data-mining tools is carried out using KDD’ 99 attack dataset and results seem to be promising. Keywords: Data mining, Data mining tools, WEKA, RapidMiner, Orange, KNIME, MOA, ELKI, Shogun, R, Scikit-Learn, Matlab —————————— —————————— 1. Introduction These patterns can help in differentiating between regular activity and malicious activity. Machine-learning based IDS We are living in the modern era of Information technology where most of the things have been automated and processed through computers. -
ELKI: ELKI: ELKI: a Software System for Evaluation a Software System
Institute for Informatics ELKI: Ludwig- Maximilians- A Software System for Evaluation Universityy Munich of Subspace Clustering Algorithms KDDTKDDTask k Environment for coordinates data source,,pp application,li i , manages data readingreading, DeveLoping and result. result DtbDatabase CtiConnection provides database to KDD-Applications main class Supported by Indendex-StrStructures ct res Index Database Structure Motivation: DtDataata miningiig researchesea ch ldleadseads tto manyayalgorithmsagolith t s fforo similarsaiil tktasks. A fifair andd usefulflcomparisonp i off ththese algorithmslithg iis KDDTask difficult due to several reasons: applies algorithm on database • Implementations of comparison partners are not at hand. Database • If implementations of different authors are providedprovided, an prints result evaluation in terms of efficiency is biased to evaluate the to desired effortseosff t ofof diffdifferentdee t authorsauth o s iin efficienteceffi i t programmingpogai gitdinsteads ead location RltResult off evaluatingltig algorithmiclithig meritsit . On the other handhand, efficient data management tools like collects result index-structures can show considerable impact on data flithfrom algorithmg mining tasks and are therefore useful for a broad variety of Algorithmg algorithms. Result-File IdIndex Central class KDDTask gets assignedidd a data File USAGEUSAGE: StStructure t source, an algorithm, javaj de.lmu.ifi.dbs.elki.KDDTask -algorithm : <class> Classname of an algorithm (implementing and a target address for de.lmu.ifi.dbs.elki.algorithm.Algorithm -
Spca Assisted Correlation Clustering of Hyperspectral Imagery
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-8, 2014 ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India SPCA ASSISTED CORRELATION CLUSTERING OF HYPERSPECTRAL IMAGERY A. Mehta a,*, O. Dikshit a a Department of Civil Engineering Indian Institute of Technology Kanpur, Kanpur – 208016, Uttar Pradesh, India [email protected], [email protected] KEY WORDS: Hyperspectral Imagery, Correlation Clustering, ORCLUS, PCA, Segmented PCA ABSTRACT: In this study, correlation clustering is introduced to hyperspectral imagery for unsupervised classification. The main advantage of correlation clustering lies in its ability to simultaneously perform feature reduction and clustering. This algorithm also allows selection of different sets of features for different clusters. This framework provides an effective way to address the issues associated with the high dimensionality of the data. ORCLUS, a correlation clustering algorithm, is implemented and enhanced by making use of segmented principal component analysis (SPCA) instead of principal component analysis (PCA). Further, original implementation of ORCLUS makes use of eigenvectors corresponding to smallest eigenvalues whereas in this study eigenvectors corresponding to maximum eigenvalues are used, as traditionally done when PCA is used as feature reduction tool. Experiments are conducted on three real hyperspectral images. Preliminary analysis of algorithms on real hyperspectral imagery shows ORCLUS is able to produce acceptable results. 1. INTRODUCTION cluster, subset of dimension (or subspace) may differ, in which cluster are discernible. Thus, it may be difficult for global In recent years, hyperspectral imaging has become an important feature reduction methods (e.g. principal component analysis) tool for information extraction, especially in the remote sensing to identify one common subspace in which all the cluster will community (Villa et al., 2013).