Full List of COSMOIGM Publications

Total Page:16

File Type:pdf, Size:1020Kb

Full List of COSMOIGM Publications Query Results http://adsabs.harvard.edu/cgi-bin/nph-abs_connect Sign on SAO/NASA Astrophysics Data System (ADS) Query Results from the ADS Database Go to bottom of page Selected and retrieved 33 abstracts. Sort options # Bibcode Score Date List of Links Authors Title Access Control Help 1 2011arXiv1106.2543V 33.000 06/2011 A X R C Villaescusa- Neutrino Signatures on the High Transmission Regions of the Navarro, Francisco; Lyman-alpha Forest Vogelsberger, Mark; Viel, Matteo; Loeb, Abraham 2 2011MNRAS.414..241B 32.000 06/2011 A E F X R C S Bolton, James S.; Viel, Matteo The impact of spatial fluctuations in the ultraviolet background on intergalactic carbon and silicon 3 2011ApJ...735...38V 31.000 07/2011 A E F X R C Vallinotto, Alberto; Cross-correlations of the Lyα Forest with Weak-lensing Convergence. Viel, Matteo; Das, Sudeep; Analytical Estimates of Signal-to-noise Ratio and Implications for Spergel, David N. Neutrino Mass and Dark Energy 4 2011JCAP...08..033X 30.000 08/2011 A E X R C Xia, Jun-Qing; Constraints on primordial non-Gaussianity from large scale structure Baccigalupi, Carlo; probes Matarrese, Sabino; Verde, Licia; Viel, Matteo 5 2011MNRAS.416.1723B 29.000 09/2011 A E F X R C Barnes, Luke A.; Galactic winds and extended Lyα emission from the host galaxies of Haehnelt, Martin G.; high column density quasi-stellar object absorption systems Tescari, Edoardo; Viel, Matteo 6 2011MNRAS.416.2247X 28.000 09/2011 A E F X R C Xia, Jun-Qing; A cross-correlation study of the Fermi-LAT γ-ray diffuse extragalactic Cuoco, Alessandro; signal Branchini, Enzo; Fornasa, Mattia; Viel, Matteo 1 of 7 11/12/2013 11:11 AM Query Results http://adsabs.harvard.edu/cgi-bin/nph-abs_connect 7 2011MNRAS.418..346M 27.000 11/2011 A E F X R C Marulli, Federico; Effects of massive neutrinos on the large-scale structure of the Carbone, Carmelita; Universe Viel, Matteo; Moscardini, Lauro; Cimatti, Andrea 8 2012JCAP...01..019P 26.000 01/2012 A E X R C Pietroni, M.; Mangano, G.; Coarse-grained cosmological perturbation theory Saviano, N.; Viel, M. 9 2012PhRvD..85d3520X 25.000 02/2012 A E X R C Xia, Jun-Qing; Cosmography beyond standard candles and rulers Vitagliano, Vincenzo; Liberati, Stefano; Viel, Matteo 10 2012MNRAS.420.2551B 24.000 03/2012 A E F X R C Bird, Simeon; Viel, Matteo; Massive neutrinos and the non-linear matter power spectrum Haehnelt, Martin G. 11 2012MNRAS.421...50V 23.000 03/2012 A E F X R C S Viel, M.; Markovič, K.; The non-linear matter power spectrum in warm dark matter Baldi, M.; Weller, J. cosmologies 12 2012MNRAS.422.1324X 22.000 05/2012 A E F X R C S Xia, Jun-Qing; Negrello, M.; Clustering of submillimetre galaxies in a self-regulated baryon Lapi, A.; De Zotti, G.; collapse model Danese, L.; Viel, M. 13 2012JCAP...06..010X 21.000 06/2012 A E X D R C Xia, Jun-Qing; Constraints on massive neutrinos from the CFHTLS angular power Granett, Benjamin R.; spectrum Viel, Matteo; Bird, Simeon; Guzzo, Luigi; Haehnelt, Martin G.; Coupon, Jean; McCracken, Henry Joy; Mellier, Yannick 14 2012MNRAS.422.3019C 20.000 06/2012 A E F X D R C S Calura, F.; Tescari, E.; The Lyman α forest flux probability distribution at z>3 D'Odorico, V.; Viel, M.; Cristiani, S.; Kim, T.-S.; 2 of 7 11/12/2013 11:11 AM Query Results http://adsabs.harvard.edu/cgi-bin/nph-abs_connect Bolton, J. S. 15 2012MNRAS.424..728B 19.000 07/2012 A E F X R C Barai, Paramita; Multiphase, non-spherical gas accretion on to a black hole Proga, Daniel; Nagamine, Kentaro 16 2012MNRAS.424.1723G 18.000 08/2012 A E F X D R C S Garzilli, A.; Bolton, J. S.; The intergalactic medium thermal history at redshift z = 1.7-3.2 from Kim, T.-S.; Leach, S.; Viel, M. the Lyα forest: a comparison of measurements using wavelets and the flux distribution 17 2012ApJ...757...48M 17.000 09/2012 A E F X R C S Martel, Hugo; The Fate of Dwarf Galaxies in Clusters and the Origin of Intracluster Barai, Paramita; Stars. II. Cosmological Simulations Brito, William 18 2012arXiv1211.6952D 16.000 11/2012 A X R Das, Tapas K; Behaviour of low angular momentum relativistic accretion close to the Nag, Sankhasubhra; event horizon Hegde, Swathi; Bhattacharya, Sourav; Maity, Ishita; Czerny, Bozena; Barai, Paramita; Wiita, Paul J; Karas, Vladimir; Naskar, Tapan 19 2012MNRAS.427.2359M 15.000 12/2012 A E F X R Munshi, Dipak; Coles, Peter; Statistics of cosmological Lyman α absorption Viel, Matteo 20 2013JCAP...01..026A 14.000 01/2013 A E X R C Audren, Benjamin; Neutrino masses and cosmological parameters from a Euclid-like Lesgourgues, Julien; survey: Markov Chain Monte Carlo forecasts including theoretical Bird, Simeon; errors Haehnelt, Martin G.; Viel, Matteo 21 2013arXiv1302.7155V 13.000 02/2013 A X R Vitagliano, Vincenzo; High-z cosmography at a glance Xia, Jun-Qing; Liberati, Stefano; Viel, Matteo 22 2013MNRAS.429.1734V 12.000 02/2013 A E F X R C 3 of 7 11/12/2013 11:11 AM Query Results http://adsabs.harvard.edu/cgi-bin/nph-abs_connect Viel, Matteo; Schaye, Joop; The impact of feedback from galaxy formation on the Lyman α Booth, C. M. transmitted flux 23 2013JCAP...03..019V 11.000 03/2013 A E X R C Villaescusa- Non-linear evolution of the cosmic neutrino background Navarro, Francisco; Bird, Simeon; Peña-Garay, Carlos; Viel, Matteo 24 2013MNRAS.430.3213B 10.000 04/2013 A E F X R C S Barai, Paramita; Viel, Matteo; Galactic winds in cosmological simulations of the circumgalactic Borgani, Stefano; medium Tescari, Edoardo; Tornatore, Luca; Dolag, Klaus; Killedar, Madhura; Monaco, Pierluigi; D'Odorico, Valentina; Cristiani, Stefano 25 2013arXiv1306.5896P 9.000 06/2013 A X R C Palanque- The one-dimensional Ly-alpha forest power spectrum from BOSS Delabrouille, Nathalie; Yèche, Christophe; Borde, Arnaud; Le Goff, Jean-Marc; Rossi, Graziano; Viel, Matteo; Aubourg, Éric; Bailey, Stephen; Bautista, Julian; Blomqvist, Michael; and 26 coauthors 26 2013JCAP...06..020C 8.000 06/2013 A E X R C Costanzi Alunno Cerbolini, M.; Constraining neutrino properties with a Euclid-like galaxy cluster Sartoris, B.; Xia, Jun-Qing; survey Biviano, A.; Borgani, S.; Viel, M. 27 2013MNRAS.431.3670V 7.000 06/2013 A E F R Villaescusa-Navarro, F.; Neutrino signatures on the high-transmission regions of the Lyman α Vogelsberger, M.; Viel, M.; forest Loeb, A. 28 2013arXiv1307.5326B 6.000 07/2013 A X R C 4 of 7 11/12/2013 11:11 AM Query Results http://adsabs.harvard.edu/cgi-bin/nph-abs_connect Barai, Paramita; Viel, Matteo; Kinetic or thermal AGN feedback in simulations of isolated and Murante, Giuseppe; merging disk galaxies calibrated by the M-sigma relation Gaspari, Massimo; Borgani, Stefano 29 2013MNRAS.432.2529I 5.000 07/2013 A E F X R C Iapichino, L.; Viel, M.; Turbulence driven by structure formation in the circumgalactic Borgani, S. medium 30 2013arXiv1308.4411B 4.000 08/2013 A X R C Bolton, James S.; A consistent determination of the temperature-density relation of the Becker, George D.; intergalactic medium at redshift z=2.4 Haehnelt, Martin G.; Viel, Matteo 31 2013PhRvD..88d3502V 3.000 08/2013 A E X R C Viel, Matteo; Warm dark matter as a solution to the small scale crisis: New Becker, George D.; constraints from high redshift Lyman-α forest data Bolton, James S.; Haehnelt, Martin G. 32 2013MNRAS.435.1198D 2.000 10/2013 A E F X R D'Odorico, V.; Cupani, G.; Metals in the IGM approaching the re-ionization epoch: results from Cristiani, S.; Maiolino, R.; X-shooter at the VLT Molaro, P.; Nonino, M.; Centurión, M.; Cimatti, A.; di Serego Alighieri, S.; Fiore, F.; and 8 coauthors 33 2013MNRAS.tmp.2441Z 1.000 10/2013 A E F X R C Zhao, Gong-Bo; Saito, Shun; The clustering of galaxies in the SDSS-III Baryon Oscillation Percival, Will J.; Spectroscopic Survey: weighing the neutrino mass using the galaxy Ross, Ashley J.; power spectrum of the CMASS sample Montesano, Francesco; Viel, Matteo; Schneider, Donald P.; Manera, Marc; Miralda- Escudé, Jordi; Palanque- Delabrouille, Nathalie; and 8 coauthors Select All Records or select individual records above for the retrieval options below 5 of 7 11/12/2013 11:11 AM Query Results http://adsabs.harvard.edu/cgi-bin/nph-abs_connect Retrieve the above records in other formats or sort order Return Sort by Display on screen short list format date (most recent first) Custom format: Email results to: Retrieve selected records To retrieve all records above, use the "Select All Records" button above. Add selected articles to private library Remove selected articles from private library Find papers related to the above articles (Sort by score ) To get lists for all records above, use the "Select All Records" button above. Use: Authors Titles Find papers similar to selected articles Key words Abstract Return: Results Form for manual query Number of records to return: Get reference lists for selected articles 200 starting with record number: 1 Publication Date between Get also-read lists for selected articles and Get citation lists for selected articles Exclude self-citations from list Self-citations help Get refereed citation lists for selected articles Include terms from previous Get form to query selected articles only search in the form This button brings up a query form 6 of 7 11/12/2013 11:11 AM Query Results http://adsabs.harvard.edu/cgi-bin/nph-abs_connect that returns only articles selected from the above list.
Recommended publications
  • THE NONLINEAR MATTER POWER SPECTRUM1 Online Material
    The Astrophysical Journal, 665:887– 898, 2007 August 20 A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE NONLINEAR MATTER POWER SPECTRUM1 Zhaoming Ma Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637; [email protected] Received 2006 October 6; accepted 2007 April 30 ABSTRACT We modify the public PM code developed by Anatoly Klypin and Jon Holtzman to simulate cosmologies with arbitrary initial power spectra and the equation of state of dark energy. With this tool in hand, we perform the follow- ing studies on the matter power spectrum. With an artificial sharp peak at k 0:2 h MpcÀ1 in the initial power spec- trum, we find that the position of the peak is not shifted by nonlinear evolution. An upper limit of the shift at the level of 0.02% is achieved by fitting the power spectrum local to the peak using a power law plus a Gaussian. We also find that the existence of a peak in the linear power spectrum would boost the nonlinear power at all scales evenly. This is contrary to what the HKLM scaling relation predicts, but roughly consistent with that of the halo model. We construct dark energy models with the same linear power spectra today but different linear growth histories. We demonstrate that their nonlinear power spectra differ at the level of the maximum deviation of the corresponding linear power spectra in the past. Similarly, two constructed dark energy models with the same growth histories result in consistent nonlinear power spectra.
    [Show full text]
  • Planck Early Results. XVIII. the Power Spectrum of Cosmic Infrared Background Anisotropies
    A&A 536, A18 (2011) Astronomy DOI: 10.1051/0004-6361/201116461 & c ESO 2011 Astrophysics Planck early results Special feature Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies Planck Collaboration: P. A. R. Ade74, N. Aghanim48,M.Arnaud60, M. Ashdown58,4, J. Aumont48, C. Baccigalupi72,A.Balbi30, A. J. Banday78,8,65,R.B.Barreiro55, J. G. Bartlett3,56,E.Battaner80, K. Benabed49, A. Benoît47,J.-P.Bernard78,8, M. Bersanelli27,42,R.Bhatia5,K.Blagrave7,J.J.Bock56,9, A. Bonaldi38, L. Bonavera72,6,J.R.Bond7,J.Borrill64,76, F. R. Bouchet49, M. Bucher3,C.Burigana41, P. Cabella30, J.-F. Cardoso61,3,49, A. Catalano3,59, L. Cayón20, A. Challinor52,58,11, A. Chamballu45,L.-YChiang51,C.Chiang19,P.R.Christensen69,31,D.L.Clements45, S. Colombi49, F. Couchot63, A. Coulais59, B. P. Crill56,70, F. Cuttaia41,L.Danese72,R.D.Davies57,R.J.Davis57,P.deBernardis26,G.deGasperis30,A.deRosa41, G. de Zotti38,72, J. Delabrouille3, J.-M. Delouis49, F.-X. Désert44,H.Dole48, S. Donzelli42,53,O.Doré56,9,U.Dörl65, M. Douspis48, X. Dupac34, G. Efstathiou52,T.A.Enßlin65,H.K.Eriksen53, F. Finelli41, O. Forni78,8, P. Fosalba50, M. Frailis40, E. Franceschi41, S. Galeotta40, K. Ganga3,46,M.Giard78,8, G. Giardino35, Y. Giraud-Héraud3, J. González-Nuevo72,K.M.Górski56,82,J.Grain48, S. Gratton58,52, A. Gregorio28, A. Gruppuso41,F.K.Hansen53, D. Harrison52,58,G.Helou9, S. Henrot-Versillé63, D. Herranz55, S. R. Hildebrandt9,62,54,E.Hivon49, M. Hobson4,W.A.Holmes56, W. Hovest65,R.J.Hoyland54,K.M.Huffenberger81, A.
    [Show full text]
  • Clusters, Cosmology and Reionization from the SZ Power Spectrum
    Clusters, Cosmology and Reionization from the SZ Power Spectrum Shaw et al. (10,11) Reichardt, LS, Zahn + (11) Zahn, Reichardt, LS + (11) Collaborators: D. Nagai, D. Rudd (Yale), G. Holder (McGill), Suman Bhattacharya (LANL), O. Zahn (Berkeley), O. Dore (Caltech), the SPT team. Tremendous recent progress measuring the CMB damping tail Small scales provide additional constraints Keisler+ on ★ Helium abundance ★ ns & running ★ neutrinos ..and beyond thermal & kinetic SZ CMB lensing CIB (dusty galaxies) Radio sources Reichardt+ 11 ..and beyond thermal & kinetic SZ CMB lensing CIB (dusty galaxies) Radio sources Reichardt+ 11 primordial signal secondaries & E.G. foregrounds Statistical detection of the SZE by searching for anisotropy power at small angular scales primary cmb thermal SZ kinetic SZ Amplitude of SZ power spectrum is particularly sensitive to matter power spectrum normalization simulated tsz map (Shaw+, 09) 10deg Sensitive to both the abundance of collapsed structures and the thermal pressure of the intra-cluster medium Halo model approach to calculating the tSZ power spectrum Calculate SZ power spectrum by integrating the mass function over M and z, weighted by cluster signal at a given angular scale. zmax dV Mmax dn(M, z) C = g2 dz dM y (M, z) 2 l ν dz dM | l | 0 0 volume integral cluster mass function Fourier transform of projected gas thermal pressure profiles Where does tSZ power come from? distribution of power at ell = 3000 (~3.6’) 10% 50% 90% Shaw+ (10) Low mass, high redshift contribution significant. Modelling the tSZ Power Spectrum Simple parameterized model, calibrated to observations and including cosmological scaling [Shaw+ (10), Ostriker+ (05)] ★ Gas resides in hydrostatic equilibrium in NFW dark matter halos with polytropic EoS ★ Assume some gas has radiatively cooled + formed stars.
    [Show full text]
  • Cosmological Structure Formation with Modified Gravity
    Cosmological Structure Formation with Modified Gravity A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 2015 Samuel J. Cusworth School of Physics and Astronomy 2 Simulations with Modified Gravity Contents Abstract . 10 Declarations . 11 Acknowledgements . 12 The Author . 14 Supporting Publications . 15 1 Introduction 17 1.1 Introduction to Modern Cosmology . 17 1.1.1 Cosmological Principle . 17 1.1.2 Introduction to General Relativity . 18 1.1.3 Einstein’s Equations from an Action Principle . 20 1.2 Concordance Cosmology . 21 1.2.1 Background Cosmology . 21 1.2.2 The Perturbed ΛCDM universe . 23 1.2.3 Non-linear Structure Formation . 27 1.3 Observational Cosmology . 30 1.3.1 SN1a . 30 1.3.2 CMB . 30 1.3.3 Galaxy Clusters . 33 1.4 f(R) as Dark Energy . 34 1.4.1 Gravitational Field Equations . 35 1.4.2 Einstein Frame . 36 Samuel Cusworth 3 CONTENTS 1.4.3 Screening Mechanism . 37 1.4.4 Viable Models . 39 2 Simulations of Structure Formation 43 2.1 Initial Condition Generation . 44 2.2 N-body Solvers . 45 2.2.1 Tree-Based Methods . 46 2.2.2 Particle Mesh Methods . 47 2.2.3 Adaptive Grid Methods . 49 2.3 Hydrodynamics . 50 2.3.1 Smoothed Particle Hydrodynamics . 51 2.4 Measuring Large Scale Structure Statistics . 54 2.4.1 Matter Power Spectrum . 54 2.4.2 Cluster Mass Function . 55 2.5 Known Limitations . 59 2.5.1 Choice of Initial Conditions .
    [Show full text]
  • The Effects of the Small-Scale Behaviour of Dark Matter Power Spectrum on CMB Spectral Distortion
    Prepared for submission to JCAP The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion Abir Sarkar,1,2 Shiv.K.Sethi,1 Subinoy Das3 1Raman Research Institute, CV Raman Ave Sadashivnagar, Bengaluru, Karnataka 560080, India 2Indian Institute of Science,CV Raman Ave, Devasandra Layout, Bengaluru, Karnataka 560012, India 3Indian Institute of Astrophysics,100 Feet Rd, Madiwala, 2nd Block, Koramangala, Bengaluru, Karnataka 560034, India E-mail: [email protected], [email protected], [email protected] Abstract. After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark mat- ter, despite successfully explaining the large-scale features of the universe, has long-standing small- scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3Mpc <k< 104 Mpc−1, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates— Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main arXiv:1701.07273v3 [astro-ph.CO] 7 Jul 2017 impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB.
    [Show full text]
  • Year 1 Cosmology Results from the Dark Energy Survey
    Year 1 Cosmology Results from the Dark Energy Survey Elisabeth Krause on behalf of the Dark Energy Survey collaboration TeVPA 2017, Columbus OH Our Simple Universe On large scales, the Universe can be modeled with remarkably few parameters age of the Universe geometry of space density of atoms density of matter amplitude of fluctuations scale dependence of fluctuations [of course, details often not quite as simple] Our Puzzling Universe Ordinary Matter “Dark Energy” accelerates the expansion 5% dominates the total energy density smoothly distributed 25% acceleration first measured by SN 1998 “Dark Matter” 70% Our Puzzling Universe Ordinary Matter “Dark Energy” accelerates the expansion 5% dominates the total energy density smoothly distributed 25% acceleration first measured by SN 1998 “Dark Matter” next frontier: understand cosmological constant Λ: w ≡P/ϱ=-1? 70% magnitude of Λ very surprising dynamic dark energy varying in time and space, w(a)? breakdown of GR? Theoretical Alternatives to Dark Energy Many new DE/modified gravity theories developed over last decades Most can be categorized based on how they break GR: The only local, second-order gravitational field equations that can be derived from a four-dimensional action that is constructed solely from the metric tensor, and admitting Bianchi identities, are GR + Λ. Lovelock’s theorem (1969) [subject to viability conditions] Theoretical Alternatives to Dark Energy Many new DE/modified gravity theories developed over last decades Most can be categorized based on how they break GR: The only local, second-order gravitational field equations that can be derived from a four-dimensional action that is constructed solely from the metric tensor, and admitting Bianchi identities, are GR + Λ.
    [Show full text]
  • Cosmology from Cosmic Shear and Robustness to Data Calibration
    DES-2019-0479 FERMILAB-PUB-21-250-AE Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Data Calibration A. Amon,1, ∗ D. Gruen,2, 1, 3 M. A. Troxel,4 N. MacCrann,5 S. Dodelson,6 A. Choi,7 C. Doux,8 L. F. Secco,8, 9 S. Samuroff,6 E. Krause,10 J. Cordero,11 J. Myles,2, 1, 3 J. DeRose,12 R. H. Wechsler,1, 2, 3 M. Gatti,8 A. Navarro-Alsina,13, 14 G. M. Bernstein,8 B. Jain,8 J. Blazek,7, 15 A. Alarcon,16 A. Ferté,17 P. Lemos,18, 19 M. Raveri,8 A. Campos,6 J. Prat,20 C. Sánchez,8 M. Jarvis,8 O. Alves,21, 22, 14 F. Andrade-Oliveira,22, 14 E. Baxter,23 K. Bechtol,24 M. R. Becker,16 S. L. Bridle,11 H. Camacho,22, 14 A. Carnero Rosell,25, 14, 26 M. Carrasco Kind,27, 28 R. Cawthon,24 C. Chang,20, 9 R. Chen,4 P. Chintalapati,29 M. Crocce,30, 31 C. Davis,1 H. T. Diehl,29 A. Drlica-Wagner,20, 29, 9 K. Eckert,8 T. F. Eifler,10, 17 J. Elvin-Poole,7, 32 S. Everett,33 X. Fang,10 P. Fosalba,30, 31 O. Friedrich,34 E. Gaztanaga,30, 31 G. Giannini,35 R. A. Gruendl,27, 28 I. Harrison,36, 11 W. G. Hartley,37 K. Herner,29 H. Huang,38 E. M. Huff,17 D. Huterer,21 N. Kuropatkin,29 P. Leget,1 A. R. Liddle,39, 40, 41 J.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]
  • 6 Structure Formation – I
    6 Structure formation – I 6.1 Newtonian equations of motion We have decided that perturbations will in most cases effectively be described by the Newtonian potential, Φ. Now we need to develop an equation of motion for Φ, or equivalently for the density fluctuation ρ (1 + δ)¯ρ. In the Newtonian approach, we treat dynamics of cosmological≡ matter exactly as we would in the laboratory, by finding the equations of motion induced by either pressure or gravity. We begin by casting the problem in comoving units: x(t) = a(t)r(t) (177) δv(t) = a(t)u(t), so that x has units of proper length, i.e. it is an Eulerian coordinate. First note that the comoving peculiar velocity u is just the time derivative of the comoving coordinate r: x˙ =a ˙r + ar˙ = Hx + ar˙, (178) where the rhs must be equal to the Hubble flow Hx, plus the peculiar velocity δv = au. The equation of motion follows from writing the Eulerian equation of motion as x¨ = g0 + g, where g = Φ/a is the peculiar −∇∇∇∇∇∇∇ acceleration, and g0 is the acceleration that acts∇∇∇ on a particle in a homogeneous universe (neglecting pressure forces to start with, for simplicity). Differentiating x = ar twice gives a¨ x¨ = au˙ + 2˙au + x = g0 + g. (179) a The unperturbed equation corresponds to zero peculiar velocity and zero peculiar acceleration: (¨a/a) x = g0; subtracting this gives the perturbed equation of motion u˙ + 2(˙a/a)u = g/a = Φ/a. (180) −∇∇∇∇∇∇∇∇∇∇ This equation of motion for the peculiar velocity shows that u is affected by gravitational acceleration and by the Hubble drag term, 2(˙a/a)u.
    [Show full text]
  • Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation
    DES-2020-0554 FERMILAB-PUB-21-240-AE Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation E. Krause,1, ∗ X. Fang,1 S. Pandey,2 L. F. Secco,2, 3 O. Alves,4, 5, 6 H. Huang,7 J. Blazek,8, 9 J. Prat,10, 3 J. Zuntz,11 T. F. Eifler,1 N. MacCrann,12 J. DeRose,13 M. Crocce,14, 15 A. Porredon,16, 17 B. Jain,2 M. A. Troxel,18 S. Dodelson,19, 20 D. Huterer,4 A. R. Liddle,11, 21, 22 C. D. Leonard,23 A. Amon,24 A. Chen,4 J. Elvin-Poole,16, 17 A. Fert´e,25 J. Muir,24 Y. Park,26 S. Samuroff,19 A. Brandao-Souza,27, 6 N. Weaverdyck,4 G. Zacharegkas,3 R. Rosenfeld,28, 6 A. Campos,19 P. Chintalapati,29 A. Choi,16 E. Di Valentino,30 C. Doux,2 K. Herner,29 P. Lemos,31, 32 J. Mena-Fern´andez,33 Y. Omori,10, 3, 24 M. Paterno,29 M. Rodriguez-Monroy,33 P. Rogozenski,7 R. P. Rollins,30 A. Troja,28, 6 I. Tutusaus,14, 15 R. H. Wechsler,34, 24, 35 T. M. C. Abbott,36 M. Aguena,6 S. Allam,29 F. Andrade-Oliveira,5, 6 J. Annis,29 D. Bacon,37 E. Baxter,38 K. Bechtol,39 G. M. Bernstein,2 D. Brooks,31 E. Buckley-Geer,10, 29 D. L. Burke,24, 35 A. Carnero Rosell,40, 6, 41 M. Carrasco Kind,42, 43 J. Carretero,44 F. J. Castander,14, 15 R.
    [Show full text]
  • Retrieving the Three-Dimensional Matter Power Spectrum and Galaxy Biasing Parameters from Lensing Tomography
    A&A 543, A2 (2012) Astronomy DOI: 10.1051/0004-6361/201118224 & c ESO 2012 Astrophysics Retrieving the three-dimensional matter power spectrum and galaxy biasing parameters from lensing tomography P. Simon Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany e-mail: [email protected] Received 7 October 2011 / Accepted 19 February 2012 ABSTRACT Aims. With the availability of galaxy distance indicators in weak lensing surveys, lensing tomography can be harnessed to constrain the three-dimensional (3D) matter power spectrum over a range of redshift and physical scale. By combining galaxy-galaxy lensing and galaxy clustering, this can be extended to probe the 3D galaxy-matter and galaxy-galaxy power spectrum or, alternatively, galaxy biasing parameters. Methods. To achieve this aim, this paper introduces and discusses minimum variance estimators and a more general Bayesian ap- proach to statistically invert a set of noisy tomography two-point correlation functions, measured within a confined opening angle. Both methods are constructed such that they probe deviations of the power spectrum from a fiducial power spectrum, thereby en- abling both a direct comparison of theory and data, and in principle the identification of the physical scale and redshift of deviations. By devising a new Monte Carlo technique, we quantify the measurement noise in the correlators for a fiducial survey, and test the performance of the inversion techniques. Results. For a relatively deep 200 deg2 survey (¯z ∼ 0.9) with 30 sources per square arcmin, the matter power spectrum can be probed with 3 − 6σ significance on comoving scales 1 kh−1 Mpc 10 and z 0.3.
    [Show full text]
  • Bias in Matter Power Spectra?
    A&A 380, 1–5 (2001) Astronomy DOI: 10.1051/0004-6361:20011284 & c ESO 2001 Astrophysics Bias in matter power spectra? M. Douspis1,3, A. Blanchard1,2, and J. Silk3 1 Observatoire Midi-Pyr´en´ees, Unit´e associ´ee au CNRS, UMR 5572, 14, Av. E.´ Belin, 31400 Toulouse, France 2 Universit´e Louis Pasteur, 4, rue Blaise Pascal, 67000 Strasbourg, France 3 Astrophysics, Nuclear and Astrophysics Laboratory, Keble Road, Oxford, OX1 3RH, UK Received 22 May 2001 / Accepted 4 September 2001 Abstract. We review the constraints given by the linear matter power spectra data on cosmological and bias parameters, comparing the data from the PSCz survey (Hamilton et al. 2000) and from the matter power spectrum infered by the study of Lyman alpha spectra at z =2.72 (Croft et al. 2000). We consider flat–Λ cosmologies, 2 Pi(k) allowing Λ, H0 and n to vary, and we also let the two ratio factors rpscz and rLyman (r = )vary i PCMB(k) independently. Using a simple χ2 minimisation technique, we find confidence intervals on our parameters for each dataset and for a combined analysis. Letting the 5 parameters vary freely gives almost no constraints on cosmology, but the requirement of a universal ratio for both datasets implies unacceptably low values of H0 and Λ. Adding some reasonable priors on the cosmological parameters demonstrates that the power derived by the PSCz survey is higher by a factor of ∼1.75 compared to the power from the Lyman α forest survey. Key words. cosmology: observations – cosmology: theory 1.
    [Show full text]