Year 1 Cosmology Results from the Dark Energy Survey

Total Page:16

File Type:pdf, Size:1020Kb

Year 1 Cosmology Results from the Dark Energy Survey Year 1 Cosmology Results from the Dark Energy Survey Elisabeth Krause on behalf of the Dark Energy Survey collaboration TeVPA 2017, Columbus OH Our Simple Universe On large scales, the Universe can be modeled with remarkably few parameters age of the Universe geometry of space density of atoms density of matter amplitude of fluctuations scale dependence of fluctuations [of course, details often not quite as simple] Our Puzzling Universe Ordinary Matter “Dark Energy” accelerates the expansion 5% dominates the total energy density smoothly distributed 25% acceleration first measured by SN 1998 “Dark Matter” 70% Our Puzzling Universe Ordinary Matter “Dark Energy” accelerates the expansion 5% dominates the total energy density smoothly distributed 25% acceleration first measured by SN 1998 “Dark Matter” next frontier: understand cosmological constant Λ: w ≡P/ϱ=-1? 70% magnitude of Λ very surprising dynamic dark energy varying in time and space, w(a)? breakdown of GR? Theoretical Alternatives to Dark Energy Many new DE/modified gravity theories developed over last decades Most can be categorized based on how they break GR: The only local, second-order gravitational field equations that can be derived from a four-dimensional action that is constructed solely from the metric tensor, and admitting Bianchi identities, are GR + Λ. Lovelock’s theorem (1969) [subject to viability conditions] Theoretical Alternatives to Dark Energy Many new DE/modified gravity theories developed over last decades Most can be categorized based on how they break GR: The only local, second-order gravitational field equations that can be derived from a four-dimensional action that is constructed solely from the metric tensor, and admitting Bianchi identities, are GR + Λ. Lovelock’s theorem (1969) [subject to viability conditions] Theoretical Alternatives to Dark Energy Many new DE/modified gravity theories developed over last decades Most can be categorized based on how they break GR: The only local, second-order gravitational field equations that can be derived from a four-dimensional action that is constructed solely from the metric tensor, and admitting Bianchi identities, are GR + Λ. Lovelock’s theorem (1969) [subject to viability conditions] Need simple tests to confront classes of models with data Are data from Does the dark energy density Do measurements of cosmic change as space expands? early Universe distances and growth of and late Universe structure agree? “Equation of state” parameter fit by the same parameters? w=pressure/density M. Betoule et al.: Joint cosmological analysis of theType SNLS and Ia SDSS SN SNe state Ia of the art Testing 0.2dark energy 46 HST C 44 β − and gravity0.15 1 42 X ↵ SNLS + 40 ) coh 0.1 G ( SDSS 38 • Λ size difficult to explain M Planck Collaboration: Cosmological parameters − B 36 0.05 m Low-z = The CMB temperature data alone does not strongly constrain • Important to test GR over 34 µ [JLA, Betoule+ 2014] w, because of a strong geometrical degeneracy even for spatially- cosmological0 scales flat models. From Planck we find 0 0.5 1 04 +0.62 redshift CDM 0 2 = . , + , ⇤ w 1 54 (95% Planck TT lowP) (51) 00 0.50 µ − − • Expansion history − 0 2 Fig. 7. Values of σcoh determined for seven subsamples of the Hubble − µ 04 σ residuals: low-zz< 0.03 and z > 0.03 (blue), SDSS z < 0.2 and z > 0.2 − i.e., almost a 2 shift into the phantom domain. This is partly, 2 1 0 (green), SNLS z < 0.5 and z > 0.5 (orange), and HST (red). 10− 10− 10 but not entirely, a parameter volume e↵ect, with the average ef- z Planck Collaboration: Cosmologicalfective χ2 improving parameters by ∆χ2 2 compared to base ⇤CDM. BAO state of the art h i⇡ Table 9. Values of σcoh used in the cosmological fits. Fig. 8. Top: HubbleBAO diagram state of the combined of the sample. art The distance This is consistent with the preference for a higher lensing am- modulus redshift relation of the best-fit ⇤CDM cosmology for a fixed plitude discussed in Sect. 5.1.2, improving the fit in the w < 1 1 1 67.2 H01.10= 70 km s− Mpc− is shown as the black line. Bottom: residu- region, where the lensing smoothing amplitude becomes slightly− • Sample σcoh als from theSDSS best-fit MGS⇤CDM cosmology as a functionWiggleZ of redshift. The From supernovae, BAOs, 66.4 Testing Dark Energylow- z I 0.134 weighted1.6 average of the residuals in logarithmic redshift bins of width larger. However, the lower limit in Eq. (51) is largely determined − 1 1 CMB peaks positionSDSS-II 0.108 ∆z/z 0.24 are shown as black dots. by the (arbitrary) prior H0 < 100 km s− Mpc− , chosen for the Planck ⇠ 65.6 ) 1.05 SNLS 0.080 [Planck 2015 XIII] (Planck+BAO+SN) Hubble parameter. Much of the posterior volume in the phan- HST 0.100 drag 000 r tom region is associated with extreme values for cosmological / V 005 1.2 1.0 0.8 0.6 M parameters,which are excluded by other astrophysical data. The • AgreementNotes. Those values with correspond LCDM to the weighted mean per survey of the − D 1.00 − − − − ∆ values shown in Fig. 7, except for HST sample for which we use the ( 010 mild tension with base ⇤CDM disappears as we add more data / − w0 average value of all samples. They do not depend on a specific choice ) 015 that break the geometrical degeneracy. Adding Planck lensing − BOSS CMASS Expansion history of cosmological model (see the discussion in Sect. 5.5). drag 28 30 32 34 r BOSS34 LOWZ and BAO, JLA and H0 (“ext”) gives the 95 % constraints: • Not so much information on Fig. 27./ 0.95Samples fromβ the distribution of the dark energy pa- V 6DFGS 32 +0.091 rametersD w0 and wa using Planck TT+lowP+BAO+JLA data, β = . + + ( w 1 023 Planck TT lowP ext ; (52a) DE/Gravity:6. ⇤CDM constraints at most from w SNe0, Iaw alonea 0.096 comparison of distance and redshift colour-coded by the value of30 the Hubble parameter H0. Contours − − = . +0.085 + + + 0.90 Planck XIII, 2015 w 1 006 0.091 Planck TT lowP lensing ext ; (52b) The SN Ia sample presented in this paper covers the redshiftshow the corresponding[Planck 2015 682 XIII %8 and] 95 % limits. Dashed grey lines − − . < < . ffi 012 014 016 +0.075 range 0 01 z 1 2. This lever-arm is su cient to provideintersect at the point in parameter space corresponding to a cos- w = 1.019 0.080 Planck TT, TE, EE+lowP+lensing+ext . 0.1 0.2 0.3 0.4↵ 0.5016 0.6 0.7 0.8 − − standard rulers: angle subtendeda stringent by known constraint on scale a single parameter driving the evolu-mological constant. (52c) z ↵ 4 tion of the expansion rate. In particular, in a flat universe with 014 a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro- -CMB: sound horizon in early Universe 012 The addition of Planck lensing, or using the full Planck tem- vide an accurate measurementM. Betoule of the reduced et al.: Joint matter cosmological density ⌦ analysism. of the SNLS and SDSS SNe Ia However, SNe alone can only measure ratios of distances, which TypeType Ia IA SN SN state state of of the the0 2art art03 04 perature+polarization likelihood together with the BAO, JLA, -BAO: same scale imprinted in late Universe Fig. 14.46 Acoustic-scale distance ratio DV(z)/rdrag ⌦inm the base and H data does not substantially improve the constraint of Testing are0.2dark independent energy of the value of the Hubble constant today (H0This= constraint is unchanged at the quoted precision if we add 0 1 1 ⇤CDM model divided by the mean distance ratio from Planck Fig. 15. 68 % and 95 % constraints on the angular diameter dis- 100 h km s− Mpc− ). In this section we discuss ⇤CDM param-the JLAFig. 9. supernovae68% and 95% data confidence and the contoursH0 prior for of the Eq.⇤CDM (30HST). fit parame- Eq. (52a). All of these data set combinations are compatible with C 44 tance D (z = 0.57) and Hubble parameter H(z = 0.57) from eter constraints from SNe Ia alone. We also detail the relativeTT in- +lowPβ +lensing. The points with 1 σ errors are as follows: the base ⇤ACDM value of w = 1. In PCP13, we conservatively Figureters. Filled26 grayillustrates contours these result from results the fit in of the the⌦ fullm– JLA⌦⇤ sample;plane. red We standard candle: brightness offluence source of each with incremental known change luminosity relative to the C11 analysis.green− dashed star (6dFGS, contours fromBeutler the fit of et a al. subsample2011); excluding square (SDSSSDSS-II data MGS, quotedthe Andersonw = 1. et13 al.+0.24(2014, based) analysis on− combining of the BOSSPlanck CMASS-DR11with BAO, and gravity0.15 1 adopt42 Eq. (50) as our most reliable constraint on spatial curva- 0.25 RossX (lowz et al.+SNLS).2014); red triangle and large circle (BOSS “LOWZ” assample. our most The reliable− fiducial− limit sound on w. horizon The errors adopted in Eqs. by (52aAnderson)–(52c) are et al. ture.↵ Our Universe appears to be spatially flat to anSNLS accuracy of fid supernovae + = . - 6.1. ⇤CDM fit of the Hubble diagram and CMASS40 surveys, Anderson et al. 2014); and small blue cir- substantially(2014) is r smaller,drag mainly149 28 because Mpc. of Samples the addition from of the the JLAPlanck 0.5%.) coh 0.1 cles (WiggleZ,G as analysed by Kazin et al. 2014). The grey bands SNeTT+ data,lowP which+lensing o↵er chains a sensitive are plotted probe of coloured the dark by energy their equa- value of ( free parameters in the fit are ⌦m and the four nuisance param- Using the distance estimator given in Eq.
Recommended publications
  • THE NONLINEAR MATTER POWER SPECTRUM1 Online Material
    The Astrophysical Journal, 665:887– 898, 2007 August 20 A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE NONLINEAR MATTER POWER SPECTRUM1 Zhaoming Ma Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637; [email protected] Received 2006 October 6; accepted 2007 April 30 ABSTRACT We modify the public PM code developed by Anatoly Klypin and Jon Holtzman to simulate cosmologies with arbitrary initial power spectra and the equation of state of dark energy. With this tool in hand, we perform the follow- ing studies on the matter power spectrum. With an artificial sharp peak at k 0:2 h MpcÀ1 in the initial power spec- trum, we find that the position of the peak is not shifted by nonlinear evolution. An upper limit of the shift at the level of 0.02% is achieved by fitting the power spectrum local to the peak using a power law plus a Gaussian. We also find that the existence of a peak in the linear power spectrum would boost the nonlinear power at all scales evenly. This is contrary to what the HKLM scaling relation predicts, but roughly consistent with that of the halo model. We construct dark energy models with the same linear power spectra today but different linear growth histories. We demonstrate that their nonlinear power spectra differ at the level of the maximum deviation of the corresponding linear power spectra in the past. Similarly, two constructed dark energy models with the same growth histories result in consistent nonlinear power spectra.
    [Show full text]
  • Planck Early Results. XVIII. the Power Spectrum of Cosmic Infrared Background Anisotropies
    A&A 536, A18 (2011) Astronomy DOI: 10.1051/0004-6361/201116461 & c ESO 2011 Astrophysics Planck early results Special feature Planck early results. XVIII. The power spectrum of cosmic infrared background anisotropies Planck Collaboration: P. A. R. Ade74, N. Aghanim48,M.Arnaud60, M. Ashdown58,4, J. Aumont48, C. Baccigalupi72,A.Balbi30, A. J. Banday78,8,65,R.B.Barreiro55, J. G. Bartlett3,56,E.Battaner80, K. Benabed49, A. Benoît47,J.-P.Bernard78,8, M. Bersanelli27,42,R.Bhatia5,K.Blagrave7,J.J.Bock56,9, A. Bonaldi38, L. Bonavera72,6,J.R.Bond7,J.Borrill64,76, F. R. Bouchet49, M. Bucher3,C.Burigana41, P. Cabella30, J.-F. Cardoso61,3,49, A. Catalano3,59, L. Cayón20, A. Challinor52,58,11, A. Chamballu45,L.-YChiang51,C.Chiang19,P.R.Christensen69,31,D.L.Clements45, S. Colombi49, F. Couchot63, A. Coulais59, B. P. Crill56,70, F. Cuttaia41,L.Danese72,R.D.Davies57,R.J.Davis57,P.deBernardis26,G.deGasperis30,A.deRosa41, G. de Zotti38,72, J. Delabrouille3, J.-M. Delouis49, F.-X. Désert44,H.Dole48, S. Donzelli42,53,O.Doré56,9,U.Dörl65, M. Douspis48, X. Dupac34, G. Efstathiou52,T.A.Enßlin65,H.K.Eriksen53, F. Finelli41, O. Forni78,8, P. Fosalba50, M. Frailis40, E. Franceschi41, S. Galeotta40, K. Ganga3,46,M.Giard78,8, G. Giardino35, Y. Giraud-Héraud3, J. González-Nuevo72,K.M.Górski56,82,J.Grain48, S. Gratton58,52, A. Gregorio28, A. Gruppuso41,F.K.Hansen53, D. Harrison52,58,G.Helou9, S. Henrot-Versillé63, D. Herranz55, S. R. Hildebrandt9,62,54,E.Hivon49, M. Hobson4,W.A.Holmes56, W. Hovest65,R.J.Hoyland54,K.M.Huffenberger81, A.
    [Show full text]
  • The Age of the Universe Transcript
    The Age of the Universe Transcript Date: Wednesday, 6 February 2013 - 1:00PM Location: Museum of London 6 February 2013 The Age of The Universe Professor Carolin Crawford Introduction The idea that the Universe might have an age is a relatively new concept, one that became recognised only during the past century. Even as it became understood that individual objects, such as stars, have finite lives surrounded by a birth and an end, the encompassing cosmos was always regarded as a static and eternal framework. The change in our thinking has underpinned cosmology, the science concerned with the structure and the evolution of the Universe as a whole. Before we turn to the whole cosmos then, let us start our story nearer to home, with the difficulty of solving what might appear a simpler problem, determining the age of the Earth. Age of the Earth The fact that our planet has evolved at all arose predominantly from the work of 19th century geologists, and in particular, the understanding of how sedimentary rocks had been set down as an accumulation of layers over extraordinarily long periods of time. The remains of creatures trapped in these layers as fossils clearly did not resemble any currently living, but there was disagreement about how long a time had passed since they had died. The cooling earth The first attempt to age the Earth based on physics rather than geology came from Lord Kelvin at the end of the 19th Century. Assuming that the whole planet would have started from a completely molten state, he then calculated how long it would take for the surface layers of Earth to cool to their present temperature.
    [Show full text]
  • Clusters, Cosmology and Reionization from the SZ Power Spectrum
    Clusters, Cosmology and Reionization from the SZ Power Spectrum Shaw et al. (10,11) Reichardt, LS, Zahn + (11) Zahn, Reichardt, LS + (11) Collaborators: D. Nagai, D. Rudd (Yale), G. Holder (McGill), Suman Bhattacharya (LANL), O. Zahn (Berkeley), O. Dore (Caltech), the SPT team. Tremendous recent progress measuring the CMB damping tail Small scales provide additional constraints Keisler+ on ★ Helium abundance ★ ns & running ★ neutrinos ..and beyond thermal & kinetic SZ CMB lensing CIB (dusty galaxies) Radio sources Reichardt+ 11 ..and beyond thermal & kinetic SZ CMB lensing CIB (dusty galaxies) Radio sources Reichardt+ 11 primordial signal secondaries & E.G. foregrounds Statistical detection of the SZE by searching for anisotropy power at small angular scales primary cmb thermal SZ kinetic SZ Amplitude of SZ power spectrum is particularly sensitive to matter power spectrum normalization simulated tsz map (Shaw+, 09) 10deg Sensitive to both the abundance of collapsed structures and the thermal pressure of the intra-cluster medium Halo model approach to calculating the tSZ power spectrum Calculate SZ power spectrum by integrating the mass function over M and z, weighted by cluster signal at a given angular scale. zmax dV Mmax dn(M, z) C = g2 dz dM y (M, z) 2 l ν dz dM | l | 0 0 volume integral cluster mass function Fourier transform of projected gas thermal pressure profiles Where does tSZ power come from? distribution of power at ell = 3000 (~3.6’) 10% 50% 90% Shaw+ (10) Low mass, high redshift contribution significant. Modelling the tSZ Power Spectrum Simple parameterized model, calibrated to observations and including cosmological scaling [Shaw+ (10), Ostriker+ (05)] ★ Gas resides in hydrostatic equilibrium in NFW dark matter halos with polytropic EoS ★ Assume some gas has radiatively cooled + formed stars.
    [Show full text]
  • Hubble's Law and the Expanding Universe
    COMMENTARY COMMENTARY Hubble’s Law and the expanding universe Neta A. Bahcall1 the expansion rate is constant in all direc- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 tions at any given time, this rate changes with time throughout the life of the uni- verse. When expressed as a function of cos- In one of the most famous classic papers presented the observational evidence for one H t in the annals of science, Edwin Hubble’s of science’s greatest discoveries—the expand- mic time, ( ), it is known as the Hubble 1929 PNAS article on the observed relation inguniverse.Hubbleshowedthatgalaxiesare Parameter. The expansion rate at the pres- between distance and recession velocity of receding away from us with a velocity that is ent time, Ho, is about 70 km/s/Mpc (where 1 Mpc = 106 parsec = 3.26 × 106 light-y). galaxies—the Hubble Law—unveiled the proportional to their distance from us: more The inverse of the Hubble Constant is the expanding universe and forever changed our distant galaxies recede faster than nearby gal- Hubble Time, tH = d/v = 1/H ; it reflects understanding of the cosmos. It inaugurated axies. Hubble’s classic graph of the observed o the time since a linear cosmic expansion has the field of observational cosmology that has velocity vs. distance for nearby galaxies is begun (extrapolating a linear Hubble Law uncovered an amazingly vast universe that presented in Fig. 1; this graph has become back to time t = 0); it is thus related to has been expanding and evolving for 14 bil- a scientific landmark that is regularly repro- the age of the Universe from the Big-Bang lion years and contains dark matter, dark duced in astronomy textbooks.
    [Show full text]
  • The Reionization of Cosmic Hydrogen by the First Galaxies Abstract 1
    David Goodstein’s Cosmology Book The Reionization of Cosmic Hydrogen by the First Galaxies Abraham Loeb Department of Astronomy, Harvard University, 60 Garden St., Cambridge MA, 02138 Abstract Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA’s successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe.
    [Show full text]
  • Cosmological Structure Formation with Modified Gravity
    Cosmological Structure Formation with Modified Gravity A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 2015 Samuel J. Cusworth School of Physics and Astronomy 2 Simulations with Modified Gravity Contents Abstract . 10 Declarations . 11 Acknowledgements . 12 The Author . 14 Supporting Publications . 15 1 Introduction 17 1.1 Introduction to Modern Cosmology . 17 1.1.1 Cosmological Principle . 17 1.1.2 Introduction to General Relativity . 18 1.1.3 Einstein’s Equations from an Action Principle . 20 1.2 Concordance Cosmology . 21 1.2.1 Background Cosmology . 21 1.2.2 The Perturbed ΛCDM universe . 23 1.2.3 Non-linear Structure Formation . 27 1.3 Observational Cosmology . 30 1.3.1 SN1a . 30 1.3.2 CMB . 30 1.3.3 Galaxy Clusters . 33 1.4 f(R) as Dark Energy . 34 1.4.1 Gravitational Field Equations . 35 1.4.2 Einstein Frame . 36 Samuel Cusworth 3 CONTENTS 1.4.3 Screening Mechanism . 37 1.4.4 Viable Models . 39 2 Simulations of Structure Formation 43 2.1 Initial Condition Generation . 44 2.2 N-body Solvers . 45 2.2.1 Tree-Based Methods . 46 2.2.2 Particle Mesh Methods . 47 2.2.3 Adaptive Grid Methods . 49 2.3 Hydrodynamics . 50 2.3.1 Smoothed Particle Hydrodynamics . 51 2.4 Measuring Large Scale Structure Statistics . 54 2.4.1 Matter Power Spectrum . 54 2.4.2 Cluster Mass Function . 55 2.5 Known Limitations . 59 2.5.1 Choice of Initial Conditions .
    [Show full text]
  • The Effects of the Small-Scale Behaviour of Dark Matter Power Spectrum on CMB Spectral Distortion
    Prepared for submission to JCAP The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion Abir Sarkar,1,2 Shiv.K.Sethi,1 Subinoy Das3 1Raman Research Institute, CV Raman Ave Sadashivnagar, Bengaluru, Karnataka 560080, India 2Indian Institute of Science,CV Raman Ave, Devasandra Layout, Bengaluru, Karnataka 560012, India 3Indian Institute of Astrophysics,100 Feet Rd, Madiwala, 2nd Block, Koramangala, Bengaluru, Karnataka 560034, India E-mail: [email protected], [email protected], [email protected] Abstract. After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark mat- ter, despite successfully explaining the large-scale features of the universe, has long-standing small- scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3Mpc <k< 104 Mpc−1, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates— Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main arXiv:1701.07273v3 [astro-ph.CO] 7 Jul 2017 impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB.
    [Show full text]
  • Galaxies at High Redshift Mauro Giavalisco
    eaa.iop.org DOI: 10.1888/0333750888/1669 Galaxies at High Redshift Mauro Giavalisco From Encyclopedia of Astronomy & Astrophysics P. Murdin © IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of Physics Publishing Bristol and Philadelphia Downloaded on Thu Mar 02 23:08:45 GMT 2006 [131.215.103.76] Terms and Conditions Galaxies at High Redshift E NCYCLOPEDIA OF A STRONOMY AND A STROPHYSICS Galaxies at High Redshift that is progressively higher for objects that are separated in space by larger distances. If the recession velocity between Galaxies at high REDSHIFT are very distant galaxies and, two objects is small compared with the speed of light, since light propagates through space at a finite speed of its value is directly proportional to the distance between approximately 300 000 km s−1, they appear to an observer them, namely v = H d on the Earth as they were in a very remote past, when r 0 the light departed them, carrying information on their H properties at that time. Observations of objects with very where the constant of proportionality 0 is called the high redshifts play a central role in cosmology because ‘HUBBLE CONSTANT’. For larger recession velocities this they provide insight into the epochs and the mechanisms relation is replaced by a more general one calculated from the theory of general relativity. In each cases, the value of GALAXY FORMATION, if one can reach redshifts that are high H enough to correspond to the cosmic epochs when galaxies of 0 provides the recession velocity of a pair of galaxies were forming their first populations of stars and began to separated by unitary distance, and hence sets the rate of shine light throughout space.
    [Show full text]
  • The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps
    The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps Contents Abstract ........................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 Section 1: The Fine-Tuning Argument and the Anthropic Principle .............................................. 3 The Improbability of a Life-Sustaining Universe ....................................................................... 3 Does God Explain Fine-Tuning? ................................................................................................ 4 The Anthropic Principle .............................................................................................................. 7 The Multiverse Premise ............................................................................................................ 10 Three Classes of Coincidence ................................................................................................... 13 Can The Existence of Sapient Life Justify the Multiverse? ...................................................... 16 How unlikely is fine-tuning? .................................................................................................... 17 Section 2: Multiverse Theories ..................................................................................................... 18 Many universes or all possible
    [Show full text]
  • Cosmology from Cosmic Shear and Robustness to Data Calibration
    DES-2019-0479 FERMILAB-PUB-21-250-AE Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Data Calibration A. Amon,1, ∗ D. Gruen,2, 1, 3 M. A. Troxel,4 N. MacCrann,5 S. Dodelson,6 A. Choi,7 C. Doux,8 L. F. Secco,8, 9 S. Samuroff,6 E. Krause,10 J. Cordero,11 J. Myles,2, 1, 3 J. DeRose,12 R. H. Wechsler,1, 2, 3 M. Gatti,8 A. Navarro-Alsina,13, 14 G. M. Bernstein,8 B. Jain,8 J. Blazek,7, 15 A. Alarcon,16 A. Ferté,17 P. Lemos,18, 19 M. Raveri,8 A. Campos,6 J. Prat,20 C. Sánchez,8 M. Jarvis,8 O. Alves,21, 22, 14 F. Andrade-Oliveira,22, 14 E. Baxter,23 K. Bechtol,24 M. R. Becker,16 S. L. Bridle,11 H. Camacho,22, 14 A. Carnero Rosell,25, 14, 26 M. Carrasco Kind,27, 28 R. Cawthon,24 C. Chang,20, 9 R. Chen,4 P. Chintalapati,29 M. Crocce,30, 31 C. Davis,1 H. T. Diehl,29 A. Drlica-Wagner,20, 29, 9 K. Eckert,8 T. F. Eifler,10, 17 J. Elvin-Poole,7, 32 S. Everett,33 X. Fang,10 P. Fosalba,30, 31 O. Friedrich,34 E. Gaztanaga,30, 31 G. Giannini,35 R. A. Gruendl,27, 28 I. Harrison,36, 11 W. G. Hartley,37 K. Herner,29 H. Huang,38 E. M. Huff,17 D. Huterer,21 N. Kuropatkin,29 P. Leget,1 A. R. Liddle,39, 40, 41 J.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]