Algorithms in Rigidity Theory with Applications to Protein Flexibility and Mechanical Linkages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Rigidity of Graphs
On Rigidity of Graphs Bachelor Thesis of Oliver Suchan at the Department of Informatics Institute of Theoretical Informatics Reviewers: Prof. Dr. Dorothea Wagner Prof. Dr. Peter Sanders Advisors: Dr. Torsten Ueckerdt Marcel Radermacher, M. Sc. Time Period: 05.11.2018 – 04.03.2019 KIT – The Research University in the Helmholtz Association www.kit.edu Acknowledgement I would like to thank my advisors Dr. Torsten Ueckerdt and Marcel Radermacher for many hours of sharing and discussing ideas. Statement of Authorship I hereby declare that this thesis has been composed by myself and describes my own work, unless otherwise acknowledged in the text. Karlsruhe, March 4, 2019 iii Abstract A rigid framework refers to an embedding of a graph, in which each edge is represented by a straight line. Additionally, the only continuous displacements of the vertices, that maintain the lengths of all edges, are isometries. If the edge lengths are allowed to only be perturbed in first order, the framework is called infinitesimally rigid. In this thesis the degrees of freedom of a certain, new type of rigidity, called edge-x- rigidity, for a given framework in the 2-dimensional Euclidean space are examined. It does not operate on the length of an edge, but on the intersection of an edge’s support line and the x-axis. This may then help to determine the class of graphs where every edge intersection with the x-axis can be repositioned along the x-axis, such that there still exists a framework that satisfies these position constraints. Deutsche Zusammenfassung Ein starres Fachwerk bezeichnet eine Einbettung eines Graphen - bei der jede Kante durch ein gerade Linie repräsentiert wird - und es keine stetige nicht-triviale Verschiebung der Knoten gibt, welche die Längen aller Kanten gleich lässt. -
Avis, David; Katoh, Naoki; Ohsaki, Makoto; Streinu, Ileana; Author(S) Tanigawa, Shin-Ichi
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Enumerating Constrained Non-crossing Minimally Rigid Title Frameworks Avis, David; Katoh, Naoki; Ohsaki, Makoto; Streinu, Ileana; Author(s) Tanigawa, Shin-ichi Citation Discrete and Computational Geometry (2008), 40(1): 31-46 Issue Date 2008-07 URL http://hdl.handle.net/2433/84862 Right The original publication is available at www.springerlink.com. Type Journal Article Textversion author Kyoto University Enumerating Constrained Non-crossing Minimally Rigid Frameworks David Avis 1 Naoki Katoh 2 Makoto Ohsaki 2 Ileana Streinu 3 Shin-ichi Tanigawa 2 April 25, 2007 Abstract In this paper we present an algorithm for enumerating without repetitions all the non-crossing generically minimally rigid bar-and-joint frameworks under edge constraints, which we call constrained non-crossing Laman frameworks, on a given set of n points in the plane. Our algorithm is based on the reverse search paradigm of Avis and Fukuda. It generates each output graph in O(n4) time and O(n) space, or, with a slightly different implementation, in O(n3) time and O(n2) space. In particular, we obtain that the set of all the constrained non-crossing Laman frameworks on a given point set is connected by flips which preserve the Laman property. Key words: geometric enumeration; rigidity; constrained non-crossing minimally rigid frameworks; constrained Delaunay triangulation. 1 Introduction Let G be a graph with vertices {1,...,n} and m edges. G is a Laman graph if m = 2n − 3 and every subset of n′ ≤ n vertices spans at most 2n′ − 3 edges. -
Rigid and Generic Structures
RIGID AND GENERIC STRUCTURES by Garn Cooper B.Sc.(Hons) Submitted in fulfilment of the requirements for the degree of Master of Science University of Tasmania February, 1993 This thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution, and to the best of my knowledge and belief this thesis contains no material previously published or written by another person, except when due reference is made in the text of the thesis. /(9 Abstract This thesis is an examination of infinitesimal rigidity in generic structures using linear algebra and matroid theory techniques. The structures examined are bar and joint structures in 1, 2 and 3 dimensions, and hinged panel structures. The focus of this work is a conjectured environment for higher dimensional analogues of Laman's theorem, and some light is consequently shed on the quest for a combinatorial characterisation of (generic) rigid bar and joint structures in three dimensions. Towards completing this thesis Don helped as supervisor, Betty helped type it, Kym helped computer it, and Robyn helped illustrate it. Contents Introduction 1 Preamble 12 Chapter 1 — Defining Rigidity 16 Chapter 2 — Rigidity in 012 32 Chapter 3 — Genericity 40 Chapter 4 — Generic Rigidity in R 2 47 Chapter 5 — Rigidity in 013 63 Chapter 6 — Hinged Panel Structures 72 Conclusions 86 Reference List 93 Introduction. Consider a triangular framework and a square framework in a plane, for which the edges are inflexible rods which are joined at the vertices by universal joints. The latter is flexible in the plane since it can deform into the shape of a rhombus. -
The Maximum Matroid for a Graph
The Maximum Matroid for a Graph Meera Sitharam and Andrew Vince University of Florida Gainesville, FL, USA [email protected] Abstract The ground set for all matroids in this paper is the set of all edges of a complete graph. The notion of a maximum matroid for a graph is introduced. The maximum matroid for K3 (or 3-cycle) is shown to be the cycle (or graphic) matroid. This result is persued in two directions - to determine the maximum matroid for the m-cycle and to determine the maximum matroid for the complete graph Km. While the maximum matroid for an m-cycle is determined for all m ≥ 4; the determination of the maximum matroids for the complete graphs is more complex. The maximum matroid for K4 is the matroid whose bases are the Laman graphs, related to structural rigidity of frameworks in the plane. The maximum matroid for K5 is related to a famous 153 year old open problem of J. C. Maxwell. An Algorithm A is provided, whose input is a given graph G and whose output is a matroid MA(G), defined in terms of its closure operator. The matroid MA(G) is proved to be the maximum matroid for G, implying that every graph has a unique maximum matroid. Keywords: graph, matroid, framework Mathematical subject codes: 05B35, 05C85, 52C25 1 Introduction Fix n and let Kn be the complete graph on n vertices. A graph in this paper is a subset E of the edge set E(Kn) of Kn. The number of edges of a graph E is denoted jEj and graph isomorphism by ≈. -
Dos Problemas De Combinatoria Geométrica: Triangulaciones
Dos problemas de combinatoria geometrica:´ Triangulaciones eficientes del hipercubo; Grafos planos y rigidez. (Two problems in geometric combinatorics: Efficient triangulations of the hypercube; Planar graphs and rigidity). David Orden Mart´ın Universidad de Cantabria Tesis doctoral dirigida por el Profesor Francisco Santos Leal. Santander, Marzo de 2003. 2 ´Indice Agradecimientos iii Pre´ambulo v Preamble vii 1 Introducci´on y Preliminares 1 1.1 Triangulaciones y subdivisiones de politopos . 1 1.1.1 Preliminares sobre Teor´ıa de Politopos . 2 1.1.2 Triangulaciones de cubos . 6 1.2 Teor´ıa de Grafos . 11 1.2.1 Preliminares y relaciones con politopos . 11 1.2.2 Inmersiones planas de grafos: Teorema de Tutte . 15 1.3 Teor´ıa de Rigidez . 20 1.3.1 La matriz de rigidez . 20 1.3.2 Tensiones y grafos rec´ıprocos . 23 1.3.3 Rigidez infinitesimal y grafos isost´aticos . 26 1.4 Pseudo-triangulaciones de cuerpos convexos y puntos . 29 1.4.1 Pseudo-triangulaciones de cuerpos convexos . 29 1.4.2 Pseudo-triangulaciones de puntos . 31 1.5Resultados y Problemas abiertos . 35 1.5.1 Triangulaciones eficientes de cubos . 35 1.5.2 Grafos sin cruces, rigidez y pseudo-triangulaciones . 36 1 Introduction and Preliminaries 41 1.1 Triangulations and subdivisions of polytopes . 41 1.1.1 Preliminaries about Polytope Theory . 42 1.1.2 Triangulations of cubes . 46 1.2 Graph Theory . 50 1.2.1 Preliminaries and relations with polytopes . 51 1.2.2 Plane embeddings of graphs: Tutte’s Theorem . 54 1.3 Rigidity Theory . 59 1.3.1 The rigidity matrix .