The Maximum Matroid for a Graph Meera Sitharam and Andrew Vince University of Florida Gainesville, FL, USA
[email protected] Abstract The ground set for all matroids in this paper is the set of all edges of a complete graph. The notion of a maximum matroid for a graph is introduced. The maximum matroid for K3 (or 3-cycle) is shown to be the cycle (or graphic) matroid. This result is persued in two directions - to determine the maximum matroid for the m-cycle and to determine the maximum matroid for the complete graph Km. While the maximum matroid for an m-cycle is determined for all m ≥ 4; the determination of the maximum matroids for the complete graphs is more complex. The maximum matroid for K4 is the matroid whose bases are the Laman graphs, related to structural rigidity of frameworks in the plane. The maximum matroid for K5 is related to a famous 153 year old open problem of J. C. Maxwell. An Algorithm A is provided, whose input is a given graph G and whose output is a matroid MA(G), defined in terms of its closure operator. The matroid MA(G) is proved to be the maximum matroid for G, implying that every graph has a unique maximum matroid. Keywords: graph, matroid, framework Mathematical subject codes: 05B35, 05C85, 52C25 1 Introduction Fix n and let Kn be the complete graph on n vertices. A graph in this paper is a subset E of the edge set E(Kn) of Kn. The number of edges of a graph E is denoted jEj and graph isomorphism by ≈.